
CLIM: A Cross-Level Workload-Aware Timing
Error Prediction Model for Functional Units

Xun Jiao , Abbas Rahimi , Yu Jiang , Jianguo Wang, Hamed Fatemi,

Jose Pineda de Gyvez, Fellow, IEEE, and Rajesh K. Gupta , Fellow, IEEE

Abstract—Timing errors that are caused by the timing violations of sensitized circuit paths, have emerged as an important threat to

the reliability of synchronous digital circuits. To protect circuits from these timing errors, designers typically use a conservative timing

margin, which leads to operational inefficiency. Existing adaptive approaches reduce such conservative margins by predicting the

timing errors in advance and adjusting the timing margin adaptively. However, these error prediction approaches overlook the impact

of input workload (i.e., operands) on path sensitization, thereby resulting in a loss of accuracy. The diversity of input operands leads

to complex path sensitization behaviors, making them hard to represent in timing error modeling. In this paper, we propose CLIM, a

cross-level workload-aware timing error prediction model for functional units (FUs). CLIM predicts whether there are timing errors in

FU at two levels: bit-level and value-level. At the bit level or value level, CLIM predicts each output bit or entire output value as one of

two classes: ftiming correct, timing erroneousg as a function of input workload and clock period, respectively. We apply supervised

learning methods to construct CLIM, by using input operands, computation history and circuit toggling as input features, as well as

outputs’ timing classes as labels. These training data are collected from gate-level simulations (GLS) of post place-and-route designs

in TSMC 45nm process. We evaluate CLIM prediction accuracy for various FUs and compare it with baseline models. On average,

CLIM exhibits 95 percent prediction accuracy at value-level, 97 percent at bit-level, and executes at a rate 173X faster than GLS. We

utilize CLIM to analyze the value-level and bit-level reliability of FUs under random and real-world application workloads. At value-level,

CLIM-based reliability estimation is within 2.8 percent deviation on average of detailed GLS ground truth. At bit-level, we introduce the

concept of bit-level reliability specification of error-tolerant applications and compare this with the CLIM-based bit-level reliability

estimation. By comparison, CLIM will classify the application quality into two classes: facceptable, non-acceptableg. On average,

97 percent application quality classification is consistent with GLS ground truth.

Index Terms—Error-tolerant design, timing error modeling, approximate computing, hardware reliability, path sensitization, input workload

Ç

1 INTRODUCTION

WITH the continuous scaling of CMOS technology,
microelectronic integrated circuits are even more

susceptible to timing errors caused by timing violations of
sensitized paths, making them a notable threat to reliability.
To protect circuits from timing errors, designers typically
use conservative timing margins acting as guardbands, com-
puted from amulti-corner worst-case analysis at design time
through static timing analysis (STA). While safe, worst-case
paths are never or rarely exercised, resulting in loss of perfor-
mance. Increasing variability caused by process, voltage,

temperature and aging (PVTA) in advanced processes
further exacerbates this problem.

Attempting to reduce such performance loss, better-than-
worst-case (BTWC) approaches have been explored. These
approaches reduce timing margins by scaling frequency,
and use recovery schemes to correct the timing errors caused
by frequency overscaling [5], [10], [14], [16]. Although effec-
tive, such techniques could incur silicon overhead for online
monitoring. Furthermore, these approaches incur perfor-
mance penalties when correcting timing errors.

To avoid such overhead, a less intrusive adaptive app-
roach has been proposed to predict and prevent timing
errors by adaptively changing the clock period. Instruction-
level models identify critical instructions by measuring their
maximum delay and use this information to guide runtime
adaptation [11], [34], [41]. Rahimi et al. proposed a timing
error rate prediction model for functional units based on
hardware PVTA variation information [30]. However, these
works all assume a worst-case scenario for path sensitiza-
tion that overlooks the effect of input operands, leading
to pessimistic modeling. Actually, the same instruction or
FU could exhibit a different delay under different input
operands, resulting in different timing error rates (TERs)
[41]. Unfortunately, due to the extremely large input space,
incorporating input operands into timing error modeling
becomes very difficult, if not impossible.

� X. Jiao, J. Wang, and R. K. Gupta are with the Department of Computer
Science and Engineering, University of California, San Diego, La Jolla,
CA 92093. E-mail: {xujiao, csjgwang, gupta}@cs.ucsd.edu.

� A. Rahimi is with the Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94704.
E-mail: abbas@eecs.berkeley.edu.

� Y. Jiang is with the School of Software, Tsinghua University, Beijing
100084, China. E-mail: jy1989@illinois.edu.

� H. Fatemi and J. Pineda are with NXP Semiconductors, Eindhoven 5656AE,
The Netherlands. E-mail: {hamed.fatemi, jose.pineda.de.gyvez}@nxp.com.

Manuscript received 18 Feb. 2017; revised 26 Sept. 2017; accepted 10 Oct.
2017. Date of publication 13 Dec. 2017; date of current version 16 May 2018.
(Corresponding author: Yu Jiang.)
Recommended for acceptance by J. Henkel.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2017.2783333

IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018 771

0018-9340� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4476-2501
https://orcid.org/0000-0003-4476-2501
https://orcid.org/0000-0003-4476-2501
https://orcid.org/0000-0003-4476-2501
https://orcid.org/0000-0003-4476-2501
https://orcid.org/0000-0003-3141-4970
https://orcid.org/0000-0003-3141-4970
https://orcid.org/0000-0003-3141-4970
https://orcid.org/0000-0003-3141-4970
https://orcid.org/0000-0003-3141-4970
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0003-0955-503X
https://orcid.org/0000-0002-6489-7633
https://orcid.org/0000-0002-6489-7633
https://orcid.org/0000-0002-6489-7633
https://orcid.org/0000-0002-6489-7633
https://orcid.org/0000-0002-6489-7633
mailto:
mailto:
mailto:
mailto:

As the efforts to reduce conservative timing margins
become more aggressive, designers are opening up to con-
tinuing operations even in the presence of timing errors. As
of now, approximate computing has allowed occasional errors
in system as long as it delivers an acceptable output quality
[7], [9], [15], [27]. The output quality of approximate com-
puting is hard to guarantee because it usually depends on
the input data. Rely [7], is a language for expressing approx-
imate computation that allows developers to define a reli-
ability specification, which identifies the minimum required
probability with which a program must produce an exact
result. Chisel [27], further enhances the capabilities of Rely
by providing combined reliability and/or accuracy specifica-
tion. The accuracy specification determines a maximum
acceptable difference between the approximate and exact
result values, while the reliability specification specifies the
probability that a computation will produce an acceptably
accurate result. The former specification can be guaranteed
through unequal error protection methods [3], or by carefully
partitioning the computation through reliable or unreliable
media [9]. However, meeting the latter specification is a
challenge for automatic model generation, since the model
must provide reliable information about the possibility of
an error occurrence under different workload conditions,
i.e., accurate error prediction. Prediction of timing errors is a
difficult problem because the space of instructions and
operands is large. Our attempt to raise the abstraction level
at which this characterization and prediction takes place to
a microarchitectural level faces the following challenges:

Challenge 1. Dynamic path sensitization could be poten-
tially affected by various parameters, such as operand val-
ues, instruction types, and computation history. These
become more complex as we move up the level of abstrac-
tion in an attempt to identify useful ‘features’ from the input
parameter space for effective timing error models.

Challenge 2. There might be numerous failed circuit paths
in the design, and the timing errors might be caused by any
one of them. It is unclear how these features will determine
what paths to sensitize and and therefore how they will
induce timing violations. We have no prior knowledge of
the circuit and in general, under cryptographic assumptions
Probably Approximately Correct (PAC) learning of Boolean
circuits is difficult, even under uniform distribution over
the inputs [25].

Proposed Approach. Therefore, to overcome these chal-
lenges and provide an accurate error prediction model,
based on our previous study in [21], we propose CLIM, a
cross-level supervised learning-based model to predict tim-
ing errors for a given input workload, clock period and FU
type. The key idea of CLIM is to establish a prediction model
that can best explore the relationship from input features to
sensitized circuit paths by learning the existing patterns
and their corresponding output classes. For a given input
data and clock period, CLIM predicts output data to be one
of two predefined classes–ftiming correct, timing erroneousg
at two levels: bit-level and value-level.

First, we measure the timing errors at each cycle to gener-
ate output class labels using GLS of post-layout designs in
TSMC 45nm technology. We also perform a trial-and-error
process to extract useful features from input data. Second,
we apply supervised learning methods to construct and

train CLIM for four FUs: (INT_ADD, FP_ADD, INT_MUL,
FP_MUL) at two levels with extracted input features
and output class labels. Third, we evaluate the prediction
accuracy of CLIM by comparing its predicted results with
GLS-based ground truth.

Contribution. This paper makes the following
contributions:

1) We present a detailed bit-level and value-level tim-
ing error behavior characterization using standard
ASIC flow and gate-level simulation. We show
that different input operands lead to different error
behaviors, and from those conclusions we extract
useful ’features’ from input operands to train the
model. We apply random forest tree on the training
data to develop CLIM, an input workload-aware
learning model to predict bit-level and value-level
timing errors. To our best knowledge, this is the first
cross-level timing error model of FUs considering
the effect of input workload.

2) We evaluate the performance of CLIM at two granu-
larities under various datasets and circuit parame-
ters such as circuit structures and clock periods.
CLIM demonstrates average prediction accuracy of
95 and 97 percent at value-level and bit-level respec-
tively, exceeding baseline models.

3) We quantify the degree of error tolerance of arith-
metic operations in error-tolerant applications by
deriving their bit-level reliability specifications. By
comparing such bit-level reliability specifications
with CLIM-predicted bit-level reliability, we predict
output quality of such applications into two classes:
facceptable, non-acceptableg. This prediction is on
average 97 percent consistent with GLS-based classi-
fication. We also utilize CLIM to analyze the value-
level reliability of FUs, which exhibits deviation
within 2.8 percent on average of detailed GLS
ground truth. We demonstrate the efficiency of
CLIM by comparing it to the execution speed of GLS.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 formulates the modeling
problem and defines useful terms. Section 4 describes the
process of constructing CLIM, including timing error extrac-
tion, input feature extraction and application of supervised
learning methods. Section 5 evaluates CLIM performance
and describes its utilization at value-level and bit-level.
Section 6 discusses the potential limitations of CLIM. We con-
clude our work in Section 7.

2 RELATED WORK

Various techniques have been proposed for tolerating tim-
ing errors and delivering an acceptable output. There are
mainly three angles in solving this problem: correcting
errors, predicting errors and accepting errors.

Correcting Errors: Various hardware methods have been
proposed to detect and correct errors [4], [14], [36], [37]. A
shadow flip-flop was used in [14] to detect and correct any
timing errors induced by speculated voltage scaling. Such
shadow flip-flop approaches were also used in error-
detection sequential circuit (EDS) [4] to double the sample
and compare the signal at different timing. A tunable

772 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

replica circuit was deployed at each pipe-stage to monitor
timing errors in a less intrusive way. VARIUS [36] proposes
a microarchitecture-aware model for the process variation-
induced timing errors. To address dynamic variations, a
thermal-aware technique scales the voltage/frequency
to track temperature fluctuations [18]; an event-guided
method takes proper architectural actions to avoid voltage
variations [17]. However, the overhead with such intrusive
error detection and correction techniques can be large, e.g.,
18 percent [28] and 21 percent [16] overheads in area, and
8 percent [8] power overhead.

Predicting Errors: To avoid such penalties, less-intrusive
techniques predict timing errors in advance and then adap-
tively change timing guardbands to improve performance
while preventing errors.

Several works predict timing errors at instruction-level
[31], [34], [41]. They claim that some instructions, which they
call critical instructions, are more prone to timing errors.
They rely on large-scale GLS and determine critical instruc-
tions by monitoring their timing violation when the clock
period is decreased. These instruction-level schemes have
two main drawbacks. First, they characterize instruction-
level errors based on GLS with limited benchmarks. The
input data from these benchmarks may only sensitize a lim-
ited number of critical paths, resulting in an underestimate
of instruction-level criticality. On the other hand, critical
instructions are characterized based on a worst-case scenario
of GLS, but in reality, the instruction might not face timing
error because its input operand is not sensitizing the critical
path. This results in pessimistic modeling. Second, the large
amount of GLS is time-consuming and not scalable and may
not cover all path sensitization behaviors. Thus, these two
issues motivate us to develop a timing-efficient workload-
aware model that does not need exhaustive simulation
and considers dynamic path sensitization variation under
various input workload.

There do exist some works that use machine learning to
predict timing errors [22], [30], [38], [42]. A linear discrimi-
nant classifier predicts the timing error rate of FUs by
obtaining PVTA variation information and then adjust tim-
ing guardbands accordingly [30]. However, it overlooks the
effect of input operands by predicting errors purely based
on PVTA parameters. A logistic regression (LR)-based
method is used to predict bit-level timing errors in [22].
However, we have shown LR is not a better choice
compared to RFC. Furthermore, its coarse-grained CPRs
sometimes could miss interesting behaviors: it uses up to
15 percent CPR but as shown in Fig. 3 some FUs do not
have timing errors until 40 percent. And it does not consider
circuit topology as an input feature in developing the
model. B-Hive, predicts bit-level timing errors for voltage-
scaled FUs [38]. This work is similar to ours with one
difference: it predicts bit-level error based on voltage. The
researchers claim that incorporating input workload in
model development provides only a negligible increase in
accuracy. Nonetheless, we found that incorporating input
operands into error modeling is important, hence the timing
error behavior of FUs, as shown in Fig. 2. Our supervised
learning model can be aligned with such approaches to pro-
vide an accurate error model for hardware execution under
various operating conditions.

Accepting Errors: Although such adaptive methods are
effective in improving performance, these methods strive to
achieve exact instruction execution and are not useful for
the accuracy specification with a wide range of require-
ments. Recently, the research community has embraced
approximate computing, which utilizes intrinsic error toler-
ance at the application level to allow occasional error occur-
rences in a system as long as the output quality is still
acceptable by users. Such applications include multimedia
applications, machine learning applications and emerging
fields such as recognition, mining, and synthesis (RMS).
Hardware-level approximation techniques relax the design
constraints (computing device or memory) by tuning
approximate knobs. An accuracy-configurable integer adder
offers two operating modes: exact and approximate [23].
During the exact operating mode, error detection and cor-
rection must be applied, while in the approximate mode the
errors can be ignored and left out uncorrected. Similarly,
floating-point units can dynamically switch between exact
and approximate modes [33]. Its approximate mode ignores
the timing errors on the less significant N bits of the fraction
part where N is a reprogrammable memory-mapped regis-
ter. Another technique is proposed for timing error accep-
tance to improve the quality-energy tradeoff for DCT/IDCT
components [19].

Our Work: In this work, we combine predicting errors and
accepting errors. For error prediction, we differ from previ-
ous work in that: 1) we predict a timing error at two granu-
larities by using a RFC method rather than relying on an
exhaustive simulation to characterize the timing errors;
2) we consider the effects of input workload and circuit
topology on path sensitization, hence the timing errors;
3) we combine the error prediction with error acceptance in
approximate computing to estimate the application quality
under various configurations.

3 PROBLEM FORMULATION

Problem Formulation: We follow the procedure of represent-
ing the timing errors of a circuit as a function of circuit
parameters and input workload. More specifically, we
abstract a circuit as a mapping from an input space I con-
sisting of p circuit parameters (e.g., the circuit structure, and
clock speed) and m input bits, to create an input I. Suppose
the function implemented by an ideal circuit, without tim-
ing errors is fi and the function of the real physical circuit is
fr, which includes the effect of timing errors. The output
value in error is cðIÞ ¼ fiðIÞ � frðIÞ, where � is the XOR
operator. Our goal is to learn (an approximation of) c given
a range of inputs and circuit parameters.

However, in general we do not know the structure of the
c function – it is not even clear a-priori if the structure of c
is similar to the structure of the circuit function f. We thus
propose evaluating a sequence of non-parametric classifica-
tion methods to classify the inputs and thereby map them
into different outputs as shown in Section 4.2.3.

Definition: We define x½t� as the input operands vector,
y½t� as the GLS output and y gold½t� as the pure-RTL simula-
tion output value, all at cycle t. Note that y½t� may contain
timing errors while y gold½t� is always clean. We denote yi½t�
and y goldi½t� as ith bit position of the GLS and RTL simula-
tion output respectively, where i ¼ 1; 2; . . .N and N is the

JIAO ET AL.: CLIM: A CROSS-LEVEL WORKLOAD-AWARE TIMING ERROR PREDICTION MODEL FOR FUNCTIONAL UNITS 773

number of output bits. We define the two classes for output
value: Ce representing timing erroneous and Cc representing
timing correct, and we define the class of y½t� and yi½t� as C½t�
and Ci½t� respectively. At cycle t, if y½t� = y gold½t�, then C½t�
is marked as class Cc. If mismatched, then C½t� is marked as
class Ce. The same principle applies to bit-level to determine
the bit-level timing class. Our goal is to predict the output
class C½t� (Ci½t�) at cycle t as a function of input workload,
clock period and FU type, denoted as follows:

C½t� ¼ fðtclk; FUtype; x½t�; x½t� 1�; x½t� 2�; . . . ; x½1�Þ (1)

Ci½t� ¼ fðtclk; FUtype; x½t�; x½t� 1�; x½t� 2�; . . . ; x½1�Þ; (2)

where tclk is the clock period, FUtype is FU type, x½t�,
x½t� 1�; . . .x½1� are the input workloads at cycle t; t� 1; . . . 1.
The reason for putting the entire input stimuli history is
that we do not know whether previous input workload
would set a circuit state and thereby have an effect on the
timing error behavior of current cycle t. In instruction-level
models [11], [34], [41], the effects of input workload are not
considered. However, per the conclusion in [38], timing
errors would be better modeled by including a deep history.
Therefore, we later investigate the features from input data
which affect the output timing error behaviors, as shown in
Section 4.2.2. In summary, this becomes a binary classifica-
tion problem: for a given input data and circuit parameters
at cycle t; t� 1; . . . 1, CLIM predicts the output C½t� (Ci½t�) to
be one of two classes: Cc or Ce.

4 CLIMMODEL

CLIM Model: It is composed of three phases as shown in
Fig. 1: Timing Error Extraction, Model Training and Model
Evaluation. a) The Timing Error Extraction phase implements

the standard ASIC flow and uses GLS to generate timing
class: Cc if matched, otherwise Ce. b) In the Model Training
phase, we preprocess the training data and extract useful
features from them, which will then be incorporated into
modeling. We then apply RFC method to construct the
model with the input features and output timing class labels
generated from last phase. c) In the Model Evaluation phase,
we use CLIM to predict the timing class of the FU output
value and then compare the predicted class with GLS
ground truth to compute prediction accuracy. More details
about the three phases are illustrated as follows.

4.1 Timing Error Extraction

We use both 32-bit integer and single-precision floating
point units (FPUs) as our experimental platforms:
INT_ADD, INT_MUL, FP_ADD, FP_MUL, implemented in
VHDL. FPUs are fully compatible with the IEEE-754 stan-
dard and can provide more complex structures compared
to their integer counterparts. We change the data types and
circuit structures to better evaluate the robustness of our
model. We extract the value-level and bit-level timing errors
through Timing Error Extraction module as illustrated in
Fig. 1, which is divided into several steps.

We use FloPoCo [13] to generate the synthesizable VHDL
codes of combinational circuits. We put wrappers at input
and output ports to have better timing notations. We then
use Synopsys Design Compiler to synthesize the VHDL codes
and use Synopsys IC Compiler to generate post place-and-
route netlist in TSMC 45nm technology. Next, we use Syn-
opsys PrimeTime to perform static timing analysis, generating
a StandardDelay Format (SDF) file. Then, we vary clock peri-
ods to simulate the netlist with Mentor Graphics Modelsim to
do SDF back-annotation gate-level simulation to generate
output data y½t�. The input stimuli of simulation x[t], comes
from two sources: Python-written random data generator

Fig. 1. CLIM model overview with three key stages: a) Timing Error Extraction to examine the timing errors under different input workload and clock
periods, and to generate output timing class labels; b) Model Training to apply random forest classification (RFC) to construct CLIM with extracted
input features from preprocessed data and output timing class labels; c) Model Evaluation to evaluate CLIM prediction accuracy by comparing its pre-
dicted results with GLS-generated ground truth, under different benchmarks datasets.

774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

and the application input data profiled usingMulti2Sim [39],
a cycle-accurate CPU-GPU heterogeneous architectural sim-
ulator. At cycle t, the input stimuli vector x½t� is applied to
GLS to generate output y½t� (yi½t�) and compare with pure-
RTL simulation result y gold½t� (y goldi½t�) to derive timing
errors as shown in Section 3.

4.2 Model Training

4.2.1 Data Preprocessing

To collect the training input data, we generate the random
input data as stimuli for simulations. For a 32-bit bit vector,
we randomly set each bit independently to produce the
training data. But note that for test input data, which might
come from application profiling, its format could be in deci-
mal format. We need to preprocess such input data to con-
vert it into the correct format, for example, 0.5 should be
converted to 00111111000000000000000000000000 if the FU
is of IEEE-754 single-precision format. The reason for doing
this is that the FU accepts 32-bit input vectors and each bit
value could affect the dynamic path sensitization, hence the
final timing class. The decimal value cannot precisely repre-
sent the impact of each bit location. Therefore, in our model
training, we use each bit value to compose input features
rather than the decimal value alone.

As a matter of methodology, we remove the repetitive
pair of fx½t� 1�; x½t�g in the dataset because the same pair of
current and preceding input leads to same timing class (as
shown next). We also exclude an ambiguous case where the
preceding input x½t� 1� is the same with current input x½t�,
because even if a timing violation occurs at cycle t, the out-
put could still appear to be correct. We note that these
two situations are unlikely especially with randomly chosen
32-bit operands.

4.2.2 Feature Extraction

From the processed training input data, we need to find out
the useful input features that determine the output timing
class. Empirically, the current cycle input workload x½t�
directly affects the dynamic path sensitization at cycle t,
hence the final output timing class. However, it is not clear
whether the preceding input has impact on the current cycle
path sensitization and timing behavior. To explore the effect
of history input workload, we use a trial-and-error process,
which iteratively varies the preceding input while fixing the
current input workload. We set the experiment as follows:

� Case 1: We fix the current input x½t� and randomly
vary the preceding cycle input x½t� 1�, where we set
cycle t ¼ 10; 30; 50; 70, We use this to evaluate the
effects of immediately preceding input.

� Case 2: We fix both the current input x½t� and the
immediately preceding input x½t� 1�, while ran-
domly varying the preceding input of immediately
preceding input x½t� 2�, where we set t as above.
We use this to evaluate the effects of the deeper
history.

We use 100K cycles for simulation and use different clock
periods. At value-level, in Case 1, we found the timing class
C½t� varies irregularly. More specifically, by comparing
every two examined neighboring outputs, e.g., c½30� and

c½50�, we found 44 percent of neighboring pairs exhibit dif-
ferent timing classes. In Case 2, we found all output timing
classes C½t� exhibit exactly the same behaviors, i.e., all Cc or
Ce. At the bit-level, we examine the hamming distance
between every two examined neighboring timing class out-
puts, where each output is a 32-bit vector of Ci½t�, where
i ¼ 0; 1; . . . 31. The hamming distance between two vectors
is defined as the number of mismatched bit positions, e.g.,
10,001 and 10,000 has a hamming distance of 1. In case 1, we
can see most pairs have a positive hamming distance, indi-
cating that the resulting output timing classes are different.
In case 2, the neighboring hamming distance is always 0,
which means the bit-level timing class output is exactly the
same for every bit position.

This key observation shows that only the preceding and
current cycle input vectors x½t� 1�, x½t� are accountable for
timing errors in the current cycle t. For a combinational
logic placed between sequential elements, it is natural that
the preceding input workload sets a state for the circuit, and
then the current input toggles nets based on the current
state. Thus, the path sensitization depends on both the cur-
rent circuit state and current circuit input. However, since
most previous works do not consider input operands as
features for timing error modeling [30], [41] and some
work points out that including a deeper history would
increase the accuracy [38], we investigate the effects of
input operands and history. This key observation locates
the source factors that determine the dynamic path sensiti-
zation and motivates an workload history-aware modeling
approach.

On the other hand, we explore circuit parameters that
can reflect or partially reflect the timing violation behaviors.
One parameter that can be used is timing class output. At
the value-level, the circuit output timing errors occur if and
only if at least one output bit location faces a timing viola-
tion. The timing violation of a particular output bit occurs
only when there is at least one sensitized circuit path ending
at that bit facing violation. A sensitized path would have all
of its nodes toggled [6]. Hence, the end point, i.e., the output
bit, should also be toggled. Thus, we also take the final out-
put value into our modeling as part of the input feature.
In summary, by composing aforementioned features, our
final input features are fx½t� 1�; x½t�; y gold½t� 1�; y gold½t�g.
At bit-level, the same principle applies and leads to the final
input features are fx½t� 1�; x½t�; y goldi½t� 1�; y goldi½t�g.

4.2.3 Training Process

Since the model has two levels, we also need to train the
model at two-levels respectively. At the value-level, we set
fx½t� 1�; x½t�; y gold½t� 1�; y gold½t�g as the input feature
and Ct as output class labels; At the bit-level, we set
fx½t� 1�; x½t�; y goldi½t� 1�; y goldi½t�g as the input feature
and Ci½t� as output class labels. Therefore, for a given circuit
with K-bit output, a set of K+1 binary classifiers is devel-
oped. Model Training stage in Fig. 1 illustrates the process of
constructing the model. First, we apply 500K random data
points as training input data. We extract the input feature
through Feature Extraction module and output labels
through Timing Error Extraction stage. We then apply and
evaluate several supervised learning methods on these
training data to train CLIM.

JIAO ET AL.: CLIM: A CROSS-LEVEL WORKLOAD-AWARE TIMING ERROR PREDICTION MODEL FOR FUNCTIONAL UNITS 775

While certain positive learnability results exist for spe-
cific classes of circuits [26], they do not cover the circuits we
consider here. In contrast to these aforementioned methods
(which essentially learn a model of the circuit under consid-
eration), we focus on learning when a circuit does not work
as desired, i.e., the circuit contains timing errors. Capturing
the timing errors will require learning a binary classifier.
Thus, we evaluate four supervised learning methods for
their increased sophistication and practical use: k-nearest
neighbor (k-NN), support vector machine (SVM), logistic
regression (LR) and random forest tree (RFC) classifiers [2].
These learning methods are very popular in classifying vari-
ous kinds of tasks and we want to see whether they fit for
the timing error classification tasks. By comparing them we
can also conclude why we choose a particular method. The
machine learning module is provided by Scikit learning
module [29] in Python, and we use the default configura-
tions for the classifiers.

We evaluate k-NN because it provides useful theoretical
properties [12] and has limited parameters to train. Given an
input vector x, k-NN classifier predicts a timing error if the
majority of the k nearest neighbors of x in the dataset D has
timing errors. However, in our case, K-NN finds its nearest
neighbors based on hamming distance, which actually over-
looks the situations wherein different bit positions would
have disparity of significance on path sensitization. Thus, we
would expect the k-NNmodel perform badly. In addition to
this, k-NN classifiers typically have sub-par generalization
performance (i.e., performance on new data) when available
labeled data is limited, which could potentially lead to
appropriate feature normalization and scaling issues.

To address these problems, we evaluate LR and SVM
because they can learn weights w on each bit position,
which considers the disparity of significance of different bit
positions.

In LR, we learn weights to compare the logic functions
that perform well on the training data D. In particular, for
an input x we predict 1, or the timing error, if the ratio of
F ðxÞ

1�F ðxÞ >¼ 1where F ðxÞ is given by

F ðxÞ ¼ 1

1þ e�w�x : (3)

In SVM, given labels yi for the N training data points xi,
SVM learn w based on the following large margin optimiza-
tion problem:

minw;h;b
1

2
jjwjj2 þ C

X
i

hi (4)

s.t. yiðw � xi þ bÞ � 1� hi; (5)

where w is weights and b is offset, which jointly determine a
separating hyperplane. Essentially, weights are learned that
maximize the margin (hi) by which examples are classified
correctly. Typically, input examples are mapped to a higher
dimensional kernel space (we use the popular Gaussian
Radial Basis Function (RBF) kernel in our experiments).

LR and SVM can learn the disparity of significance of dif-
ferent bit positions. However, one potential limitation is
that, they put a fixed weight on each bit position. It is
unclear whether each bit position contributes linearly to the
final timing error, and the contribution of each bit position

might be changed along with the change of other bit values.
Think about an “AND” gate – if one input is zero, then the
final result will always remain the same regardless of the
value of the other input.

To address this problem, we propose to use RFC. RFC is
an ensemble-learning method that constructs multiple deci-
sion trees at training time and uses their averaging to
improve accuracy and control overfitting. Decision trees are
a non-parametric supervised learning method that aims to
establish a tree-like model by learning decision rules from
training data. As a white box model, the decision rules are
based on Boolean logic; thus it is easy to understand and
interpret. However, decision trees can easily create overly
complex trees and become very deep by learning many
irregular patterns with a large variance. This will lead to the
notorious overfitting problem, which cannot generalize the
data well. RFC alleviates this problem by constructing mul-
tiple decision trees. In our scenario, RFC can predict the tim-
ing errors based on the decision rules it learned from the
data patterns. This method emphasizes the disparity of dif-
ferent bit positions and also considers the interaction
between the input bits. Although it may lose the opportu-
nity to learn some “irregular” patterns, overall it reduces
overfitting and boosts performance.

S ¼

f1A f1B f1C C½1�
f2A f2B f2C C½2�
..
. ..

. ..
. ..

.

fdA fdB fdC C½d�

2
66664

3
77775

(6)

S1 ¼

f5A f5B f5C C½5�
f10A f10B f10C C½10�
..
. ..

. ..
. ..

.

f100A f100B f100C C½100�

2
66664

3
77775

(7)

S2 ¼
f15A f15B f15C C½15�
f20A f20B f20C C½20�
..
. ..

. ..
. ..

.

f200A f200B f200C C½200�

2
6664

3
7775 (8)

SM ¼
f3A f3B f3C C½3�
f40A f40B f40C C½40�
..
. ..

. ..
. ..

.

f400A f400B f400C C½400�

2
6664

3
7775: (9)

We use Equation (6) to (9) to illustrate the process of creat-
ing a random forest classifier. Equation (6) is the original
training dataset, where we have d input samples, each of
which is composed of 3 features, that lead to a particular
class C. We split the entire training data intoM independent
sub-sample datasets,S1, S2; . . . ; SM . Then,we useM decision
tree classifiers to fit all sub-sample datasets. Hence, M deci-
sion trees are developed. Finally, each decision tree predicts
the class and we use the majority vote of all M votes as the
final prediction result. In the model construction, we need to

776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

tune several important parameters such as number of trees in
the forest, the depth of trees, and the number of features to
test at each node. Increasing these parameters could possibly
improve the prediction accuracy but incurs more computa-
tional overhead. Thus, we use the default settings recom-
mended by Scikit learningmodule [29].

Table 1 presents the prediction accuracy, training and
testing time of four methods using 100K random training
data and 10K random test data under a computer configura-
tion of 2-core Intel(R) Xeon(R) CPU E5504@2.00 GHz and
50 GB memory. More specifically according to the Table,
LR is fastest because of its relatively easy computation pro-
cess, which assigns weight to each bit position. However,
it achieves the lowest accuracy because the contribution
of each bit position is not identical to the final output.
Although SVM achieves good accuracy, compared with the
other three classifiers its long running time impedes its use.
Comparing to the other three baseline classifiers, we can
emphasize why RFC is the choice because it can interpret
the difference at each bit position (compared with KNN) as
well as interactions among bits (compare with SVM and
LR). Finally, we choose RFC due to its high accuracy, fast
computing time and superior interpretability. Note that the
training process is a one-shot activity, so the testing time is
more important for model usage.

4.3 Model Evaluation

We evaluate the model performance by comparing with
GLS under various FUs, clock periods, and datasets.

4.3.1 Evaluation Metrics

Prediction Accuracy: Prediction accuracy is an intuitive
measurement of how accurate the predictions are. We
define mean bit-level prediction accuracy (MBPA) and
mean value-level prediction accuracy (MVPA) as follows:

MBPA½clk� ¼
P

bit i

�P
cycle t

jCðpredÞ
clk;i;t

¼¼C
ðrealÞ
clk;i;t

j
#cycles

�

#bit positions
(10)

MVPA½clk� ¼
P

cycle t jCðpredÞ
clk;t ¼¼ C

ðrealÞ
clk;t j

#cycles
; (11)

where C
ðpredÞ
clk;i;t and C

ðrealÞ
clk;i;t are the predicted and real timing

classes (1 for timing-erroneous and 0 for timing-correct)
for bit position i at a given clock period clk and cycle t.
C

ðpredÞ
clk;t and C

ðrealÞ
clk;t are the predicted and real timing classes (1

for timing-erroneous and 0 for timing-correct) for the entire
value at a given clock period clk and cycle t. Its best value is
0 and worst value is 1.

4.3.2 Comparison Methods

Wecompare CLIM against following baselinemethods, which
can help us evaluate the true performance of ourmodel:

� rand [35]: This model is adopted from [35]. We call it
rand model because it predicts the timing class with
random guessing without considering the effects of
input operands.

� fixed [11], [34], [41]: This model is adopted from [11],
[34], [41]. We call it fixed model because it always
predicts a fixed timing class based on the pre-
characterized information, i.e., it predictsCc (Ce) when
the clock period does (not) meet the measured maxi-
mum instruction-level timing delay. At the bit-level, it
always predicts the particular timing class that has
more instances in training data. For example, if in the
training datamore data are timing correct than errone-
ous, then this model always predicts timing correct.
Note that this model can lead to high prediction accu-
racy if the dataset is heavily biased, e.g., 99 percent of
the output data isCc. Then its prediction accuracy is 99
percent by always predicting timing correct.

5 EXPERIMENTAL RESULTS

In this section, we first describe our experimental setup. Sec-
ond, we characterize hardware timing behaviors. Third, we
evaluate CLIM performance at both the bit-level and the
value-level. Lastly, we examine CLIM efficiency.

5.1 Experimental Setup

To provide a decent amount of timing errors, we set the
experimental clock period for each FU for which their
value-level timing error rates (TERs) reach 10, 20, and
30 percent under random data approximately, where TER is
calculated as #erroneous cycles=#total cycles. From this
point on, we refer the clock period reduction (CPR) pair, which
leads to such three TERs as {CPR1, CPR2, CPR3}. Note that
such CPR pair values are different for each FU.

While such CPRs could be derived through a trial-and-
error GLS, it is very time-consuming since we need to iterate
clock periods until the target timing error rates is met. This
process could take numerous GLS, especially considering
we have four FUs and three CPRs. Therefore, we derive such
clock periods through the characterization of dynamic
delays of all simulation cycles.We know a timing error occur
if the clock period is less than the dynamic delay at a cycle;
therefore we only need to sort all the dynamic delays and
find the top 10, 20, and 30 percent dynamic delay as the
{CPR1, CPR2, CPR3}. First, we extract all the dynamic delays;
we parse the value change dump (VCD) file, which is gener-
ated by GLS at a relatively slow clock period to make sure
there is no timing violation. The VCD file records the toggled
endpoints of each circuit path at each cycle. Second, for each
clock cycle, we use the last toggle event time of the input pin
of all sequential elements (flip-flop, registers, etc.) to subtract
the last positive clock edge arrival time to get the maximum
delay at that cycle. For example, at cycle N the positive clock
edge occurs at time t, and the very last toggled event at the
data input pin of all sequential elements occurs at time t0,
then the dynamic delay at this cycle is t0 � t. Third, we sort

TABLE 1
Prediction Accuracy, Training Time, and Testing Time

of Four Learning Methods

method Accuracy Training Time Testing Time

LR 85% 42.8 s 0.21 s
KNN 87% 4224 s 849 s
SVM 92% 18600 s 1968 s
RFC 93% 94.74 s 0.26 s

JIAO ET AL.: CLIM: A CROSS-LEVEL WORKLOAD-AWARE TIMING ERROR PREDICTION MODEL FOR FUNCTIONAL UNITS 777

all the dynamic delays in a descending order, and locate the
delay at the top 10, 20, and 30 percent position.

We use three datasets to evaluate and utilize the model:
random data, Sobel filter and Gaussian filter. The two image
processing applications are adopted from AMD APP SDK
[1]. The openCL code of these applications are simulated by
Multi2Sim to profile input data. The images are adopted
from Caltech-UCSD Birds 200 vision dataset [40].

5.2 Hardware Characterization

Timing errors are caused by the violations of circuit timing
specification where the sensitized path delay is larger than
the clock period. Thus, the key to modeling timing errors is
to model the path sensitization behavior. We present a case
study that demonstrates the effect of input operands on tim-
ing errors. We utilize the Timing Error Extraction module
described in Section 4.1 to characterize the timing errors of
different FUs.

5.2.1 Bit-Level

We depict bit-level timing errors at CPR3 under different
input datasets as illustrated in Fig. 2, where we observe sev-
eral important facts.

First, under the same input dataset, different bit positions
exhibit different timing error rates. This is because different
output bits lie on different paths with different delays. Sec-
ond, under a different input dataset, the same bit positions
exhibit different timing error rates. For example, in Fig. 2c,
some bit positions under the sobel and gauss datasets exhibit
a nearly zero timing error rate while those same bits under
random dataset exhibit up to a 20 percent timing error rate.
This is because different input data exercise different paths
towards an output bit, thus causing different delays. Third,
some bit positions might exhibit similar timing error rates
under different datasets. For example, in Fig. 2d, some bit
positions exhibit a similar timing error rate under three
datasets. From this observation, we infer that the path sensi-
tization behavior in FP_MUL is relatively similar under
these three input datasets, thus resulting in similar timing
error rates. In summary, these observations of input data
impact on timing error behavior has motivated us to
develop an workload-aware model.

5.2.2 Value-Level

In Fig. 3 we present three different CPRs of four FUs that
would lead to 10, 20, and 30 percent TERs, where we
can observe several important facts. First, for INT_ADD,
10 percent TER is caused by 43 percent CPR, meaning that 43
percent timing margin is used to protect 10 percent timing

violations. This suggests a large timing margin has been used
for worst-case scenarios. Second, TER increases rapidly after
that: TER increases from 10 to 30 percent while CPR only
increases from 43 to 45 percent. This suggests that many paths
of similar lengths are sensitized in this delay range, which this
is consistent with the timing wall phenomenon [24]. Whenwe
compare FP_ADD timing characteristics with INT_ADD, we
found there is a difference and a similarity. The difference is
that, for FP_ADD, the same level of timing error rate is caused
by a lower CPR, indicating that FP_ADD is more susceptible
to clock period reductions. The similarity is that, the TER also
rapidly increases after that point: TER increases from 10 to
30 percent while CPR only increases from 21 to 23 percent.
This is also consistent with the timing wall phenomenon.
Both designs suggest that there is a large timing margin used
to protect worst-case timing violations (10 percent) and
emphasizes the need for accurate timing errormodel.

5.2.3 Failed Paths

We also compute the number of paths with negative slack
under such CPRs for INT_ADD. As illustrated in Fig. 5, the
number of failed paths increases with the CPR. We note that
for every CPR point, there are more than 6K failed paths. This
means that once any path in this set fails, the whole design
faces timing violation. This corresponds to challenge 2 in Sec-
tion 1, where multiple path failures can lead to timing viola-
tions; howeverwe need to learn whether anymember of these
failed paths will be sensitized. For the FP_ADD, even for the

Fig. 3. Value-level timing error rate (%) versus clock period reduction
(CPR).

Fig. 2. Bit-level timing error rate (%) under different input datasets.

778 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

slightest TER at 10 percent, we observed more than 30K
failed paths. CLIM needs to predict the timing violation even
if there is only one path failure, which makes it an extremely
difficult task to learn such path sensitization behaviors.

5.3 Bit-Level CLIM

We first evaluate the bit-level model of CLIM on four FUs
and compare with baseline models.

Tables 2 and 3 present the MBPA of CLIM for INT_ADD
and FP_ADD, where we can observe several facts. For
INT_ADD, CLIM exhibits prediction accuracy between
95.6-99.9 percent across three datasets and CPRs. Mean-
while, fixed can deliver prediction accuracy between
88.7-99.9 percent and rand almost always achieves 50 percent
accuracy. More specifically, fixed only achieves 99.9 percent
accuracy when the input dataset is sobel or gauss. These
two datasets are heavily biased with almost zero TERs,
according to Fig. 2a. For rand dataset, which is more repre-
sentative, CLIM achieves 96.2 percent accuracy while fixed
achieves 91.3 percent accuracy on average. For FP_ADD,
CLIM exhibits prediction accuracy between 93.5-98.7 percent
across three datasets and CPRs. Meanwhile, fixed can deliver
prediction accuracy between 87.9-97.5 percent and rand
almost always achieves 50 percent accuracy. On average,
CLIM achieves 96.3 percent accuracy and fixed achieves
92.1 percent accuracy. In summary, under mild TERs, fixed
classifier can almost always achieve decent accuracy,
perhaps leading one to doubt whether it is necessary and
worthwhile to develop CLIM. In fact, fixed classifier has no
ability to identify any positive output because it always pre-
dicts outputs to beCc. This will severely hurt system reliabil-
ity as it assumes no error when an error could occur. Thus,
we further compare these models on more FUs by using
them to predict the output quality of approximate comput-
ing applications as presented in Tables 4 and 5. Before get-
ting to the result, we first introduce bit-level reliability
specification of approximate computing applications.

Bit-level Specification. The error-tolerant applications used
in the approximate computing field exhibit enhanced error
resilience at the application-level when multiple valid out-
put values are permitted. Instead of a single output value,
the output value is associated within an application-specific
quality metric, such as peak signal-to-noise ratio (PSNR).

Therefore, if execution is not numerically precise, the appli-
cation can still appear to execute correctly from the users’
perspective. We focus on error-tolerant applications mainly
from the image processing domain, including Sobel filter
and Gaussian filter. In image processing applications, a
PSNR larger than 30dB is generally considered as acceptable
to users [33]. As illustrated in Fig. 4, it is hard to tell the dif-
ference between exact output and approximate output.

We quantify the degree of error tolerance of arithmetic
operations in these applications by defining the notion of
bit-level reliability specification. Similar with Rely [7]
described in Section 1, it defines the minimum required
probability with which the arithmetic operation output bit
must be correct so that the application can deliver an accept-
able output. For example, if we say reliability specification
of 20th bit of FP_MUL operation is 70 percent, it means if
the reliability of this bit is lower than 70 percent, the appli-
cation output quality is not acceptable.

We compute the reliability specification for each bit of
interested arithmetic operations through an iterative fault
injection process as shown in Fig. 6. First, we flip the one
output bit of our interested operation (e.g., INT_MUL) with
an initial probability that is small enough so that the appli-
cation output quality is acceptable. This fault injection is
done using our-modified version of Multi2Sim [39] simula-
tor. Second, we check the output quality of the resulted
application using Matlab. Third, if the output quality is
acceptable, we increase the bit flip probability and repeat
step 1 and 2 until the output quality is not acceptable, then
we use the last acceptable probability as the threshold prob-
ability. After these steps, we calculate the reliability specifi-
cation as 1� threhold probability. We repeat such fault
injection processes for every bit position across multiple
arithmetic operations and error-tolerant applications.

Quality Estimation.We then use CLIM to predict the error-
tolerant application quality into two classes: facceptable,
non-acceptableg with the following process. First, we obtain
the bit-level reliability specification of each bit position.
Second, we use CLIM to predict the bit-level TER of each bit
position, and then use 1� TER to derive bit-level reliability.
We then compare the predicted reliability with reliability
specification. If the predicted reliability is greater than the
specification, then CLIM will predict the application quality
is acceptable; otherwise it is unacceptable. For example, if

TABLE 2
Bit-Level CLIM on INT_ADD for Timing Error Prediction

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 96.7% 92.8% 50.0% 96.1% 92.3% 49.9% 95.6% 88.7% 50.0%
sobel 99.8% 99.9% 49.9% 99.9% 99.9% 49.9% 99.9% 99.8% 50.0%
gauss 99.9% 99.9% 49.9% 99.9% 99.9% 49.9% 99.9% 99.9% 49.9%

TABLE 3
Bit-Level CLIM on FP_ADD for Timing Error Prediction

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 97.6% 91.1% 49.8% 95.5% 88.6% 50.1% 94.8% 87.9% 50.0%
sobel 96.3% 93.4% 49.9% 94.4% 89.4% 50.0% 93.5% 88.6% 49.9%
gauss 98.7% 97.5% 50.0% 98.1% 96.7% 49.9% 98.1% 96.2% 50.0%

TABLE 4
Bit-Level CLIM on INT_MUL for Application Quality Prediction

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

sobel 100% 100% 3.1% 100% 100% 3.1% 100% 100% 3.1%
gauss 100% 100% 4.6% 100% 100% 4.6% 98.4% 95.3% 4.6%

TABLE 5
Bit-Level CLIM on FP_MUL for Application Quality Prediction

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

sobel 100% 68.7% 87.5% 100% 68.7% 87.5% 96.8% 68.7% 87.5%
gauss 96.8% 75.0% 78.1% 93.7% 75.0% 78.1% 93.7% 75.0% 78.1%

JIAO ET AL.: CLIM: A CROSS-LEVEL WORKLOAD-AWARE TIMING ERROR PREDICTION MODEL FOR FUNCTIONAL UNITS 779

the predicted reliability for 20th bit of FP_MUL is greater
than 70 percent, then CLIMwill predict the application qual-
ity is acceptable. Third, we use GLS to compute the ground-
truth reliability for each bit position. Then we use such reli-
ability to determine whether the application quality is
acceptable by comparing it with reliability specification, as
with the second step. Finally, GLS will produce a ground
truth result on whether an application quality is acceptable
or not. Fourth, we then compare the prediction result of
CLIM with GLS ground truth and compute the prediction
accuracy across all the bit positions. We repeat the same
process for fixed and rand classifier.

Tables 4 and 5 compare the accuracy of the three models.
For INT_MUL, both CLIM and fixed achieve high prediction
accuracy because according to Fig. 2c, sobel and gauss
have almost zero TERs. Thus, the real reliability is close to
100 percent which matches the fixed classification. The rand
achieves low accuracy because its predicted reliability is close
to 50 percent while the real reliability is close to 100 percent.
For most bit positions, the bit-level specification is between
50 and 100 percent, thus rand has a different prediction than
ground truth, resulting in low accuracy. For FP_MUL,
CLIM achieves accuracy between 93.7-100 percent while fixed
and rand achieves 68.7-75.0 percent and 78.1-87.5 percent
respectively. The low accuracy of fixed is due to the fact that

most bit positions of FP_MUL have non-zero TERs. For exam-
ple, for bit position 21 under sobel dataset whose bit-level
specification is 99 percent, its ground-truth reliability is
96.7 percent as computed by GLS, making the quality non-
acceptable. Since CLIM-predicted reliability is 95.5 percent,
fixed-predicted reliability is 100 percent and rand-predicted
reliability is 50 percent, both CLIM and rand correctly predict
non-acceptable while fixed predicts acceptable, leading to a mis-
prediction. In summary, CLIM demonstrates robustness
across FUs and datasets regardless of whether it is biased,
while fixed achieves low accuracy due to its inability to iden-
tify erroneous instances.

5.4 Value-Level CLIM

Tables 6 and 7 present theMVPA of CLIM for INT_ADD and
FP_ADD. For INT_ADD, CLIM exhibits average prediction
accuracy at 97.4 percent across three datasets and CPRs.
Meanwhile, fixed delivers average prediction accuracy at
6.8 percent and rand almost always achieves 50 percent accu-
racy. For FP_ADD, CLIM exhibits average prediction

Fig. 5. The number of failed path of INT_ADD under different clock
period reductions.

Fig. 4. (a) Original input image. (b) Error-free exact Sobel filter output with PSNR = inf. (c) Error-injected approximate Sobel filter with PSNR = 30dB.

Fig. 6. Derive bit-level reliability specification for error-tolerant applica-
tions through fault injection. Pbit flip is a bit flip probability.

780 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

accuracy at 93.6 percent across three datasets and CPRs.
Meanwhile, fixed delivers average prediction accuracy at
28.5 percent and rand almost always achieves 50 percent
accuracy. The low accuracy of fixed classifier is due to the fact
that at instruction-level, it always predicts Ce for all cycles
because examined clock periods are all smaller than instruc-
tion-level timing delay. It only considers the worst-case sce-
nario to set its instruction-level timing delay. Since fixed
always predicts Ce when the examined clock period is
smaller than instruction-level delay, its predicted value-level
reliability is always close to 0. This will severely deviate from
the ground truth reliability when the TER is mild. Thus, we
further compare these models on more FUs by utilizing
them to predict the reliability as presented in Tables 8 and 9.

Before getting to the result, we introduce the evaluation
metric on assessing the accuracy of reliability predictions:
absolute error, as follows

AE ¼ jrelipred � religlsj; (12)

where relipred is the predicted reliability while religls is the
ground truth reliability derived by GLS. This metric defines
the difference between the predicted value and the “true”
value, so a smaller value means a better performance.

Tables 8 and 9 compare the accuracy of three models. For
INT_MUL, CLIM achieves AE between 0.5-4.7 percent while
fixed and rand achieve 65.1-91.6 percent and 15.0-49.9 percent
respectively. For FP_MUL, CLIM achieves AE between 0.4-
6.2 percent while fixed and rand achieve 69.9-89.9 percent and
19.9-39.9 percent respectively. The low accuracy of fixed is
due to the fact that at the three CPRs, the TERs are approxi-
mately 10, 20, and 30 percent respectively and fixed always
predicts 0 reliability, leading to a huge difference. This indi-
cates that only considering the worst-case instruction-level
delay to predict timing errors could lead to a huge deviation
from the real scenario, which might be even worse than a
random guess. Meanwhile, CLIM demonstrates its robust-
ness with average AE at 2.8 percent.

5.5 CLIM Efficiency

We compare the CLIM speed with GLS. On average across
all datasets and FUs, CLIM computes 173X faster than GLS.
The more complex the circuit structure, the slower speed
for simulation. But this might not apply to CLIM, because it

processes input data according to its own rule, which might
not scale up with the complexity of the circuit structure. For
previous instruction-level models [41], the authors claim
that the GLS is very time-consuming and becomes a bottle-
neck for research purpose. Thus, CLIM provides a faster
alternative way to examine reliability without performing
time-consuming conventional GLS.

6 DISCUSSION

Variability Consideration: This paper mainly focuses on
modeling timing error based on dynamic path sensitization
behaviors caused by input operands. Therefore, it does not
consider hardware variability effects such as PVTA varia-
tion on timing errors. Our previous work [30] did establish
a timing error model by considering hardware variability,
which is orthogonal to our approach by considering the
input stimuli. Therefore, these two approaches can be com-
bined to provide a more holistic model.

Potential Usage: The machine learning approaches pro-
posed in this paper can also be used to predict the timing
errors for a different implementation of circuits, such as
approximate adders [20]. On the other hand, the model
could be utilized online to guide dynamic frequency scaling
(DFS) with an efficient physical implementation. Recently, a
voltage-droop induced delay prediction model has been
implemented using SVM to guide online DFS [42], whose
hardware overhead is 1.5 percent for today’s processor
design. We expect the overhead of CLIM is less than such a
model, since by comparison Table 1 shows that SVM com-
puting time is more than 7000X of RFC model.

Potential Limitation: The main limitation of such a learning-
driven method is that it only works for arithmetic functional
units. It is unclear whether it can work for other micro-
architecture parts such as memory. This is because the
advantage ofmachine learning is that it can learn the path sen-
sitization based on input data pattern, which is the main fac-
tor that determine timing errors. But for memory, there is not
a clear clue as to the source factors of its timing errors.

Potential Improvement: In fact, despite the fact that the deep
neural networks recently achieve very high classification
accuracy in various classification tasks, their implementations

TABLE 6
value-Level CLIM on INT_ADD for Timing Error Prediction

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 96% 9.9% 49.7% 93.5% 19.0% 50.0% 91.2% 29.6% 49.8%
sobel 99.3% 0.7% 49.9% 99.0% 0.8% 49.8% 98.4% 1% 50.0%
gauss 99.9% 0.1% 50.0% 99.9% 0.1% 50.0% 99.0% 0.1% 49.9%

TABLE 7
Value-Level CLIM on FP_ADD for Timing Error Prediction

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 95.6% 9.7% 50.2% 93.2% 20.1% 50.1% 92.3% 67.0% 49.8%
sobel 95.3% 33.8% 49.9% 88.8% 39.9% 50.1% 92.2% 48.8% 49.9%
gauss 97.1% 9.6% 49.9% 94.2% 11.9% 50.0% 93.3% 15.6% 49.8%

TABLE 8
Value-Level CLIM on INT_MUL for Reliability

Prediction Using AE

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 0.9% 89.9% 49.9% 0.6% 79.4% 29.4% 0.5% 70.2% 20.3%
sobel 2.4% 91.6% 41.6% 1.8% 84.4% 34.4% 4.6% 69.2% 19.2%
gauss 0.6% 89.8% 39.8% 3.1% 81.6% 31.5% 4.7% 65.1% 15.0%

TABLE 9
Value-Level CLIM on FP_MUL for Reliability

Prediction Using AE

datasets
CPR1 CPR2 CPR3

CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 3.3% 89.9% 39.9% 3.9% 79.9% 29.9% 3.3% 70.5% 20.5%
sobel 0.4% 89.7% 39.7% 4.0% 80.0% 30.0% 0.5% 69.9% 19.9%
gauss 4.2% 89.9% 39.9% 5.8% 79.5% 29.5% 6.2% 70.9% 20.9%

JIAO ET AL.: CLIM: A CROSS-LEVEL WORKLOAD-AWARE TIMING ERROR PREDICTION MODEL FOR FUNCTIONAL UNITS 781

require massive amount of hardware resources that limits
their usage for on-chipmonitoring. Alternative brain-inspired
learning method such as hyperdimensional computing [32]
enables fast and one-shot learning with low cost binary com-
ponents, and exhibits reliable operations under extreme low
signal-to-noise ratio conditions hence it can be efficiently
implemented for on-chip online usage.

7 CONCLUSION AND FUTURE WORK

CLIM is a supervised learning-based model to predict tim-
ing errors of functional units at two granularities: the bit-
level and the value-level. It considers the impact of input
operands on dynamic path sensitization (and hence timing
errors). We perform gate-level simulation on a post-layout
netlist to extract timing errors and useful ’features’ from
input data and circuit activity. We then apply a random for-
est classification method to construct the model with
extracted input features and output labels. We considered
input workload, computation history, and circuit toggling
as input features to construct CLIM. For a given input data
and circuit parameter, CLIM predicts the output to be one of
two classes: ftiming correct, timing erroneousg. On average
across several FUs and CPRs, its bit-level and value-level
prediction accuracy are 97 and 95 percent respectively. We
utilize CLIM in estimating error-tolerant application output
quality, achieving an average of 97 percent accuracy. CLIM-
based reliability estimation is within 2.8 percent deviation
on average of detailed gate-level simulation.

Our ongoing work seeks to improve the efficiency of
model building by using efficient and more advanced learn-
ing methods.

ACKNOWLEDGMENTS

The authors would like to thank the support from the NSF
Expedition in Computing grant CCF-1029783 and NXP
Semiconductors.

REFERENCES

[1] AMD app SDK v2.5. (2011). [Online]. Available: http://www.
amd.com/stream

[2] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin,
Germany: Springer, 2006.

[3] S. Borade, B. Nakibo�glu, and L. Zheng, “Unequal error protection:
An information-theoretic perspective,” IEEE Trans. Inform. Theory,
vol. 55 no. 12, pp. 5511–5539, Dec. 2009.

[4] K. Bowman, et al., “Energy-efficient and metastability-immune
resilient circuits for dynamic variation tolerance,” IEEE J. Solid-
State Circuits, vol. 44 no. 1, pp. 49–63, Jan. 2009.

[5] K. Bowman, et al., “A 45 nm resilient microprocessor core for
dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 46
no. 1, pp. 194–208, Jan. 2011.

[6] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits, Berlin, Ger-
many: Springer Science & Business Media, 2004, vol. 17.

[7] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantita-
tive reliability for programs that execute on unreliable hardware,”
ACM SIGPLAN Notices, vol. 48, pp. 33–52, 2013.

[8] K. Chae, S. Mukhopadhyay, C.-H. Lee, and J. Laskar, “A dynamic
timing control technique utilizing time borrowing and clock
stretching,” in Proc. IEEECustom Integr. Circuits Conf., 2010, pp. 1–4.

[9] H. Cho, L. Leem, and S. Mitra, “ERSA: Error resilient system archi-
tecture for probabilistic applications,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 31 no. 4, pp. 546–558, Apr. 2012.

[10] M. R. Choudhury, V. Chandra, R. C Aitken, and K. Mohanram,
“Time-borrowing circuit designs and hardware prototyping for
timing error resilience,” IEEE Trans. Comput., vol. 63 no. 2,
pp. 497–509, Feb. 2014.

[11] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay,
and A. Burg, “Exploiting dynamic timing margins in micropr-
ocessors for frequency-over-scaling with instruction-based clock
adjustment,” in Proc. Des., Autom. Test Eur. Conf. Exhibition, 2015,
pp. 381–386.

[12] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classi-
fication,” IEEE Trans. Inform. Theory, vol. 13 no. 1, pp. 21–27,
Jan. 1967.

[13] F. De Dinechin and B. Pasca, “Designing custom arithmetic data
paths with FloPoCo,” IEEE Des. Test Comput., vol. 28, no. 4,
pp. 18–27, Jul.–Aug. 2011.

[14] D. Ernst, et al., “Razor: A low-power pipeline based on circuit-
level timing speculation,” in Proc. Annu. IEEE/ACM Int. Symp.
Microarchit., 2003, pp. 7–18.

[15] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in Proc.
45th Annu. IEEE/ACM Int. Symp. Microarchit., 2012, pp. 449–460.

[16] M. Fojtik, et al., “Bubble razor: An architecture-independent
approach to timing-error detection and correction,” in Proc. IEEE
Int. Solid-State Circuits Conf., 2012, pp. 488–490.

[17] M. S. Gupta, V. J. Reddi, G. Holloway, G.-Y.Wei, andD.M. Brooks,
“An event-guided approach to reducing voltage noise in process-
ors,” in Proc. Conf. Des. Autom. Test Eur., 2009, pp. 160–165.

[18] F.Hameed,M.A.A. Faruque, and J.Henkel, “Dynamic thermalman-
agement in 3Dmulti-core architecture through run-time adaptation,”
inProc. Des. Autom. Test Eur. Conf. Exhibition, 2011, pp. 1–6.

[19] K. He, A. Gerstlauer, and M. Orshansky, “Circuit-level timing-
error acceptance for design of energy-efficient DCT/IDCT-based
systems,” IEEE Trans. Circuits Syst. Video Technol., vol. 23 no. 6,
pp. 961–974, Jun. 2013.

[20] X. Jiao, V. Camus, M. Cacciotti, Y. Jiang, C. Enz, and R. K. Gupta,
“Combining structural and timing errors in overclocked inexact
speculative adders,” in Proc. Des. Autom. Test Eur. Conf. Exhibition,
2017, pp. 482–487.

[21] X. Jiao, Y. Jiang, A. Rahimi, and R. K. Gupta, “SLoT: A supervised
learning model to predict dynamic timing errors of functional uni-
ts,” in Proc. Des., Autom. Test Eur. Conf. Exhibition, 2017, pp. 1183–
1188.

[22] X. Jiao, et al., “Supervised learning based model for predicting
variability-induced timing errors,” in Proc. 13th Int. New Circuits
Syst. Conf., 2015, pp. 1–4.

[23] A. B. Kahng and S. Kang, “Accuracy-configurable adder for
approximate arithmetic designs,” in Proc. 49th Annu. Des. Autom.
Conf., 2012, pp. 820–825.

[24] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribu-
tion for graceful degradation under voltage overscaling,” in Proc.
15th Asia South Pacific Des. Autom. Conf., 2010, pp. 825–831.

[25] M. Kharitonov, “Cryptographic hardness of distribution-specific
learning,” in Proc. 25th Annu. ACM Symp. Theory Comput., 1993,
pp. 372–381.

[26] N. Linial, Y. Mansour, and N. Nisan, “Constant depth circuits,
fourier transform, and learnability,” J. ACM, vol. 40 no. 3,
pp. 607–620, 1993.

[27] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: Reliability-and accuracy-aware optimization of approxi-
mate computational kernels,” in Proc. ACM Int. Conf. Object Ori-
ented Program. Syst. Languages Appl., 2014, pp. 309–328.

[28] P. Ndai, et al., “Trifecta: A nonspeculative scheme to exploit com-
mon, data-dependent subcritical paths,” IEEE Trans. Very Large
Scale Integration Syst., vol. 18 no. 1, pp. 53–65, Jan. 2010.

[29] F. Pedregosa, et al.,“Scikit-learn: Machine learning in python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[30] A. Rahimi, L. Benini, and R. K. Gupta, “Hierarchically focused
guardbanding: An adaptive approach to mitigate PCT variations
and aging,” in Proc. Des. Autom. Test Eur. Conf. Exhibition, 2013,
pp. 1695–1700.

[31] A. Rahimi, L. Benini, and R. K. Gupta, “Application-adaptive
guardbanding to mitigate static and dynamic variability,” IEEE
Trans. Comput., vol. 63 no. 9, pp. 2160–2173, Sep. 2014.

[32] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional com-
puting,” in Proc. Int. Symp. Low Power Electronics Des., 2016,
pp. 64–69.

[33] A. Rahimi, A.Marongiu, R. K. Gupta, and L. Benini, “A variability-
aware OpenMP environment for efficient execution of accuracy-
configurable computation on shared-FPU processor clusters,” in
Proc. 9th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst.
Synthesis, 2013, Art. no. 35.

782 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 6, JUNE 2018

http://www.amd.com/stream
http://www.amd.com/stream

[34] S. Roy and K. Chakraborty, “Predicting timing violations through
instruction-level path sensitization analysis,” in Proc. 49th Annu.
Des. Autom. Conf., 2012, pp. 1074–1081.

[35] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman, “EnerJ: Approximate data types for safe and
general low-power computation,” ACM SIGPLAN Notices, vol. 46,
pp. 164–174, 2011.

[36] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas, “Varius: A model of process variation and result-
ing timing errors for microarchitects,” IEEE Trans. Semicond.
Manuf., vol. 21 no. 1, pp. 3–13, Feb. 2008.

[37] Y. Tamir and M. Tremblay, “High-performance fault-tolerant
VLSI systems using micro rollback,” IEEE Trans. Comput., vol. 39
no. 4, pp. 548–554, Apr. 1990.

[38] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas,
S. Ogrenci-Memik, and S. Parthasarathy, “b-HiVE: A bit-level
history-based error model with value correlation for voltage-
scaled integer and floating point units,” in Proc. 52nd Annu. Des.
Autom. Conf., 2015, Art. no. 105.

[39] R. Ubal, B. Janscikitg, P.Mistry, D. Schaa, and D. Kaeli, “Multi2Sim:
A simulation framework for CPU-GPU computing,” in Proc. 21st
Int. Conf. Parallel Archit. Compilation Techn., 2012, pp. 335–344.

[40] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,
and P. Perona, “Caltech-UCSD birds 200,” California Institute of
Technology, 2010.

[41] J. Xin and R. Joseph, “Identifying and predicting timing-critical
instructions to boost timing speculation,” in Proc. 44th Annu.
IEEE/ACM Int. Symp. Microarchit., 2011, pp. 128–139.

[42] F. Ye, F. Firouzi, Y. Yang, K. Chakrabarty, and M. B. Tahoori, “On-
chip droop-induced circuit delay prediction based on support-
vector machines,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 35 no. 4, pp. 665–678, Apr. 2016.

Xun Jiao received the dual bachelor’s degree
from the Beijing University of Posts and Telecom-
munications, China and the Queen Mary Univer-
sity of London, United Kingdom, in 2013. He is
currently working toward the PhD degree with the
University of California, San Diego. His research
interests include error-tolerant computing and
machine learning.

Abbas Rahimi received the BS degree in com-
puter engineering from the University of Tehran,
Tehran, Iran, the MS and PhD degrees in com-
puter science and engineering from the Univer-
sity of California San Diego, La Jolla, CA, in 2010
and 2015. He is currently working toward the
postdoctoral degree in the Department of Electri-
cal Engineering and Computer Sciences, the Uni-
versity of California Berkeley, Berkeley, CA. He is
a member of the Berkeley Wireless Research
Center and collaborating with UC Berkeley’s Red-

wood Center for Theoretical Neuroscience. His research interests
include brain-inspired computing, approximate computing, massively
parallel integrated architectures, embedded systems and software with
an emphasis on improving energy efficiency and robustness. His doc-
toral dissertation has been selected to receive the 2015 Outstanding Dis-
sertation Award in the area of “New Directions in Embedded System
Design and Embedded Software” from the European Design and Auto-
mation Association (EDAA). He has also received the Best Paper at
BICT, 2017, and the Best Paper Candidate at DAC, 2013.

Yu Jiang received the BS degree in software
engineering from the Beijing University of post and
telecommunication, beijing, China, and the PhD
degree in computer science from Tsinghua Univer-
sity, Beijing, China, in 2010 and 2015. He is currently
working toward the Postdoc researcher degree in
the department of computer science of University
of Illinois at Urbana-Champaign, IL. His current
research interests includedomain specificmodeling,
formal computation model, formal verification and
their applications in embedded systems, safety anal-
ysis and assurance of cyber-physical system.

Jianguo Wang received the bachelor’s degree
from Zhengzhou University, China, and the Mphil
degree in computer science from The Hong Kong
Polytechnic University, in 2009 and 2012. He is
currently working toward the PhD degree with the
University of California, San Diego. His research
interests include data management system and
new computing hardware.

Hamed Fatemi received the BSc and MSc
degrees from the Electrical and Computer Engi-
neering Department of the University of Tehran,
Tehran, Iran, and KNT, and the PhD degree in
computer architecture from the Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands
in 1998, 2001, and 2007, respectively. He is an
Innovation lead / Department manager at NXP
Semiconductors. His research interests include
the areas of low-power design, multi-processors,
heterogeneous and reconfigurable systems, and

variability tolerance design. Fatemi has authored and co-authored more
than 25 US patents, scientific publications and presentations

Jose Pineda de Gyvez is a fellow at NXP Semi-
conductors where he coordinates R&D efforts
on low power design technologies. His industrial
responsibilities are positioned in the interface
between design and technology. He also holds the
professorship Resilient Nanoelectronics (parttime)
in the Department of Electrical Engineering,
the Eindhoven University of Technology, The
Netherlands. This professorship fills a gap between
industry and academia by bringing industrial knowl-
edge into classrooms, and open innovation into

NXP. He was a faculty member in the Department of Electrical Engineer-
ing, Texas A&M University. He has been associate editor of several the
IEEE Transactions and is often involved in program and steering commit-
tees of international symposiums. He is also a member of the editorial
board of the Journal of LowPower Electronics. He hasmore than150 publi-
cations in the fields of low power IC design, analog signal processing, and
design for manufacturability and test. He is (co)-author of four books, and
hasmore than 20US granted patents. He is a fellow of the IEEE.

Rajesh K. Gupta received the BTech degree
in electrical engineering from the Indian Institute
of Technology, Kanpur, India, the MS degree in
electrical engineering and computer science from
the University of California, Berkeley, and the
PhD degree in electrical engineering from
Stanford University, California, in 1984, 1986,
and 1994. He is a professor of computer science
and engineering with the University of California,
San Diego (UCSD), La Jolla, and holds the Qual-
comm endowed chair. His research interests

span topics in embedded and cyber-physical systems with a focus on
energy efficiency from algorithms, devices to systems that scale from IC
chips, and data centers to built environments such as commercial build-
ings. He currently leads NSF project MetroInsight with the goal to orga-
nize and use city-scale sensing data for improved services. His past
contributions include SystemC modeling and SPARK parallelizing high-
level synthesis, both of which have been incorporated into industrial
practice. Earlier, he led NSF Expeditions on Variability, and DARPA-
sponsored efforts under the Data Intensive Systems (DIS) and Circuit
Realization at Faster Timescales (CRAFT) programs. He and his
students have received a best demonstration paper award at ACM
BuildSys’16, best paper award at IEEE/ACM DCOSS08 and a best dem-
onstration award at IEEE/ACM IPSN/SPOTS05. He currently holds
INRIA International Chair at the French international research institute in
Rennes, Bretagne Atlantique. He is a fellow of the IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JIAO ET AL.: CLIM: A CROSS-LEVEL WORKLOAD-AWARE TIMING ERROR PREDICTION MODEL FOR FUNCTIONAL UNITS 783

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

