Synthesizing Hardware-Specific Instructions for Efficient Code
Generation of Simulink

Zehong Yu
KLISS, BNRist, School of Software,
Tsinghua University
Beijing, China

Rui Wang
Information Engineering College,
Capital Normal University
Beijing, China

Abstract

Simulink has become a pivotal tool in embedded scenarios, offer-
ing a model-driven approach for embedded software development.
Given the tight performance and resource constraints in embed-
ded applications, it is crucial to ensure the efficiency of the code
generated from Simulink models. Code generators implement vari-
ous optimizations to enhance performance. However, they neglect
the potential of hardware-specific instructions available in modern
processors, such as saturation-type instructions, which accomplish
complex operations in fewer cycles. Moreover, relying on state-of-
the-art compilers to use these instructions is also not as effective
as expectation, due to their complex semantics.

This paper proposes AMICA, an efficient code generator for
Simulink models with hardware-specific instruction synthesis. The
key insight of Amica is to leverage model semantics to effectively
synthesize the appropriate instructions. Amica first converts the
model into the dataflow graph and crafts a series of optimization
rules represented as dataflow subgraph with constraints related to
block parameters, data types, and other critical properties. Then,
Awmica iteratively matches these rules with dataflow graph to obtain
the optimizable candidates. The candidate that maximizes latency
reduction is chosen to update the dataflow graph. Finally, Amica
synthesizes the appropriate instructions for optimizable blocks in
accordance with instruction syntax and block properties. We im-
plemented and evaluated Amica on benchmark Simulink models.
Compared with the state-of-the-art code generators Simulink Em-
bedded Coder, Mercury, and Frodo, the code generated by Amica
is 1.29% - 8.36x% faster in terms of execution time across different
platforms. Besides, AMIcA reduces 6% - 53% assembly code size of
the compiled programs, while performing similarly in terms of data
segment size and BSS segment size.

*Zhuo Su and Yu Jiang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2025-3/26/04

hitps://doi.org/10.1145/3744916.3764536

Zhuo Su’
School of Software,
Beihang University

Beijing, China

Yu Jiang®
KLISS, BNRist, School of Software,
Tsinghua University
Beijing, China

Keywords

Simulink, Code Generation, Hardware-specific Instruction

ACM Reference Format:

Zehong Yu, Zhuo Su, Rui Wang, and Yu Jiang. 2026. Synthesizing Hardware-
Specific Instructions for Efficient Code Generation of Simulink. In 2026
IEEE/ACM 48th International Conference on Software Engineering (ICSE °26),
April 12-18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3744916.3764536

1 Introduction

Simulink [22] has become a pivotal tool in embedded scenarios,
offering a model-driven approach to design embedded systems, such
as aerospace design, automotive system, and healthcare system [6, 8,
17, 29]. Code generation plays a crucial role in model-driven design,
which automatically transforms high-level models into embedded
code, thereby eliminating manual efforts and reducing coding errors.
Embedded devices inherently have low-power and high real-time
features, making it essential for applications to meet specific energy
and performance goals [28]. Thus, generating efficient code for
embedded scenarios is both critical and challenging.

To meet these requirements, recent works have developed several
effective approaches to ensure code efficiency. Simulink Embedded
Coder [7], the built-in toolkit, offers various options for optimiza-
tion. For instance, it implements expression folding and variable
reuse to reduce redundant assignments, and merges loop constructs
to minimize conditional evaluations for improved performance. DF-
Synth [23] aims to optimize complex branch blocks in Simulink
models by decomposing the target model into blocks embedded
within control statements and generating tailored code templates
for each block. Other works have leveraged hardware features to
accelerate code execution. For example, Mercury [33] adjusts the
code translation order to prevent data hazards, thereby improving
instruction pipeline utilization and overall code performance.

Despite their advancements, these state-of-the-art code gener-
ators overlook the importance of hardware-specific instructions,
resulting in suboptimal code efficiency. In other words, they fail to
identify optimizable blocks within the target model and synthesize
appropriate hardware instructions for these blocks. Modern proces-
sors include specialized instructions in their instruction sets, that
perform complex operations requiring multiple regular instructions.
For example, Tricore [9], developed by Infineon [1] and widely de-
ployed in automotive applications, provides a range of specialized

https://doi.org/10.1145/3744916.3764536
https://doi.org/10.1145/3744916.3764536

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

instructions aimed at meeting stringent real-time requirements, e.g.,
QSEED. F for calculating the reciprocal square root. Such instruc-
tions are implemented in hardware and can minimize execution
latency compared to software-based implementations.

Moreover, relying on the compilers to use these hardware-specific
instructions is not as effective as expectation. State-of-the-art com-
pilers, e.g., GCC and Clang, use pattern-matching for instruction se-
lection, and have difficulty in exploiting complex hardware-specific
instructions, e.g., saturation-type instructions. The intricate natures
of these instructions, e.g., complex control flows and various vari-
ants code sequences, make it difficult to develop universal matching
strategies [18]. Our primitive experiments also show that using
hardware-specific instructions through inline assembly achieves
significant performance improvement under high-level compiler
optimization (see §3).

In fact, the Simulink model contains rich semantics, e.g., parame-
ters and connections, and they can bring benefits when synthesizing
hardware-specific instructions. For instance, saturation is an in-
herent parameter of Simulink block and can be used to determine
whether saturation-type instructions should be synthesized. How-
ever, to effectively utilize model semantics for hardware-specific
instruction synthesis, we must address the following two chal-
lenges: (1) The first challenge is to develop precise optimization
rules and effectively use them for instruction synthesis. Given the
rich model semantics, optimization rules must account for not only
the properties of blocks, but also for their connections. However,
it is necessary to exact critical properties from a large set of less
relevant ones, and optimization rules often require analyzing con-
nections among multiple blocks, leading to a vast search space.
Additionally, since the same block may relate to multiple optimiza-
tion rules, selecting the appropriate rules is essential for maximizing
performance improvement. (2) The second challenge is to design
a coarse-grained framework for optimization. Different hardware
platforms offer functionally equivalent but semantically different in-
structions. Crafting distinct optimization rules for each instruction
can be both tedious and error-prone. Moreover, synthesizing appro-
priate instructions requires careful consideration of their specific
semantics. Therefore, developing a unified optimization scheme
that effectively handles the diversity of instruction variants and
model semantics is challenging.

To address the aforementioned challenges, we introduce Am-
ICA, an efficient code generator for Simulink models via hardware-
specific instruction synthesis. First, AMIcA parses the model to
obtain essential contents for constructing dataflow graph of the
target model, such as block properties and connections. Meanwhile,
AmMIcA crafts a series of optimization rules, represented as dataflow
subgraph with constraints related to block parameters, data types,
and other critical properties. This process filters out irrelevant con-
tent for subsequent optimization. For the functionally equivalent
but semantically different instructions, Amica merges them into
the same optimization rule, while developing distinct optimization
rules for platform-specific instructions. After that, AMIca selects
applicable optimization rules in accordance with the target plat-
form, and iteratively matches them with dataflow graph to identify
optimization candidates. The candidate that maximizes latency re-
duction is selected to update the dataflow graph, with the updated

Zehong Yu, Zhuo Su, Rui Wang, and Yu Jiang

blocks labeled as optimizable. Finally, AMica synthesizes the appro-
priate instructions for these optimizable blocks, taking into account
instruction syntax and block properties. This synthesized code is
then integrated with code generated from other basic blocks in
accordance with the translation sequence, yielding high-efficiency
code for deployment.

We implemented and evaluated the effectiveness of AmicA on
benchmark Simulink models [23, 33], across different platforms.
The results demonstrate that AMIica gains pronounced performance
improvement. Compared with the state-of-the-art code generators
Simuink Embedded Coder, Mercury, and Frodo, the code generated
by AMIca is 1.29X - 5.12%, 1.69X - 8.33X, and 1.68X - 8.36X, in
terms of execution time. We also collected the assembly code size,
data segment size, and BSS segment size of the compiled programs.
The statistics show that compared with Simulink Embedded Coder,
Mercury, and Frodo, AMica reduces the assembly code size by 6% -
53%, 6% - 50%, and 9% - 49%, respectively, while performing similarly
in terms of data segment size and BSS segment size.

In summary, this paper makes the following contributions:

e We proposed and implemented AmiIca, an efficient code
generator through hardware-specific instruction synthesis.
Based on model semantics, AMICA crafts optimization rules
and iteratively selects the appropriate rule for optimization
to minimize execution latency.

e We evaluated Amica on benchmark models. The results
show that Amica achieves significant performance improve-
ment and effectively reduces the assembly code size.

2 Background
2.1 Model-Driven Design and Simulink

Model-driven design is a software development approach that pri-
oritizes the creation, refinement, and manipulation of models as the
primary artifacts during the design and implementation process. By
employing model as the high-level abstraction, it allows developers
to concentrate on system functionality and architecture, rather than
low-level code and implementation. This leads to the widespread
adoption of model-driven design in the embedded systems domain,
particularly for the design of complex control systems [4, 10-12].

Simulink [22], a part of the MATLAB software suite, is the most
widely used model-driven design tool, which facilitates the devel-
opment of various embedded and real-time scenarios, including but
not limited to aerospace design, automotive system, and healthcare
system [6, 8, 15, 17, 29, 31]. It provides a graphical programming
environment for users to develop and analyze the target dynamic
systems [25, 27], and implements corresponding toolsets for four
critical model-driven design stages mentioned above.

2.2 Code Generation

Code generation is the centerpiece of model-driven design, which
automatically converts the target model into embedded code for
deployment. On the one hand, it releases the developers from te-
dious and error-prone coding tasks, thereby improving software
development efficiency. On the other hand, the quality and correct-
ness of the generated code should be ensured, as it directly impacts
the effectiveness of the target software and incorrect code can lead
to undefined behaviors and unexpected outputs.

Synthesizing Hardware-Specific Instructions for Efficient Code Generation of Simulink

In general, code generation consists of three key steps: model
parse, schedule convert, and code synthesis [24]. @ Model parse, as
the preparation step, interprets the target model to collect the criti-
cal information for subsequent usage, including blocks, parameters,
and connections. Such information describes the hierarchical archi-
tecture, dataflow, and input-output relationships within the model,
as well as constraints or dependencies essential for scheduling and
code synthesis. @ Schedule convert first derives the sequential
relationship and connectivity between blocks in accordance with
the connections, and then conducts topology-based analysis to ob-
tain the translation sequence of model blocks. Note that, as each
iteration of topology-based analysis may have multiple candidate
blocks, this results in the presence of multiple equivalent transla-
tion sequences. 3 Code synthesis is responsible for generating the
corresponding code for each block in accordance with its function-
ality and parameters. It then assembles the code for all blocks into
deployable code based on the derived translation sequence. As long
as the code generator preserves correctness and adheres to the orig-
inal model semantics, it can customize each block’s implementation
to enhance the performance of the generated code.

3 Motivation

Modern processors integrate specialized instructions alongside
general-purpose ones to enhance performance-critical applications,
such as real-time vehicle system, digital signal processing, and ar-
tificial intelligence [13, 19, 20]. These specialized instructions can
perform complex operations that typically require multiple regular
instructions, thereby reducing execution latency and improving
system efficiency. For example, consider calculating the square
root of a floating-point number. Software-based implementation of
this operation typically uses iterative algorithms such as Newton’s
Method [3]. These algorithms often involve multiple arithmetic
operations, including additions, multiplications, and divisions, and
take several processor cycles to converge to a precise result. In con-
trast, square root can be calculated in fewer cycles when utilizing
dedicated hardware instructions, i.e., QSEED. F in Tricore, FSQRT in
ARM, and FSQRT. S in RISC-V.

Motivation Example. We introduce a sample model shown in
Figure 1 to quantitatively illustrate the benefit of hardware-specific
instructions in code generation. The left code snippets show the
code generated by Simulink Embedded Coder for calculating recip-
rocal square root (highlighted in blue), calculating absolute value
difference (highlighted in green), and performing saturation addi-
tion (highlighted in orange). The right counterparts are the cor-
responding instructions written in inline assembly on the Tricore
platform. We compiled all the code versions using GCC with the
-03 flag enabled. The experimental results show that incorporat-
ing hardware-specific instructions yields significant performance
improvement. Moreover, this suggests that even state-of-the-art
compiler with the highest optimization fail to synthesize these
instructions for speedup. Although handwriting inline assembly
can satisfy performance requirements in some cases, its steep re-
quirements for expert knowledge of the target instruction set ar-
chitecture, along with its tedious and error-prone nature, makes
it less practical in most cases. Therefore, it is urgent to develop
an effective method to introduce hardware-specific instructions in
code generation for performance improvement.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Reciprocal Square Root

1

1 1
1 1
1 1
1 Inl Outl 1
1 1
1 1

2

! C2) Sub ABS !
;2 outz
1 1
1 . - 1
h (33 Saturation Add '
1 Out3 1
1 1

(a) Sample Model

: __asm("QSEED.F %@, %1"
Outl = 1.0 / sqrt(Inl); SiesTe : "=d"(Outl)
: "d"(In1)); ~ 10.6x faster
int temp = In2 - In3;
if (temp > @) Synthesize __asm("ABSDIF %o, %1, %2"
out2 = temp; — : "=d"(Out2)
else : "d"(In2), "d"(In3));

Oout2 = -temp; ~ 4.5x faster

int64_t u = (int64_t)In2 + In3;
if (u > 2147483647LL)
u = 2147483647LL;
else if (u < -2147483648LL)
u = -2147483648LL;
Out3 = (int)u;

Synthesize __asm("ADDS %o, %1, %2"
: "=d"(out3)
: "d"(In2), "d"(In3));

~ 3.7x faster
(b) Generated Code

Figure 1: A sample model to illustrate the benefits of
hardware-specific instructions. The left code snippets are
generated by Simulink Embedded Coder, while the right code
snippets are the corresponding hardware-specific instruc-
tions on the Tricore platform.

Existing Approaches. Code generators [7, 23, 32, 33] have
made notable efforts to generate high-efficiency code. For exam-
ple, Simulink Embedded Coder [7] design various optimizations,
such as expression folding and loop fusion, to avoid redundant
assignments and judgments, while Mercury [33] adjusts the transla-
tion sequence to decrease instruction pipeline stalls. However, they
overlook the potential of hardware-specific instructions for perfor-
mance improvement, and fail to synthesize these instructions in
performance-critical scenarios. Furthermore, state-of-the-art com-
pilers, such as GCC, which typically rely on pattern-matching for
instruction selection, also have difficulty in exploiting intricate
hardware-specific instructions, e.g., saturation-type instructions
and rounding-type instructions, due to their complex semantics:
complex control flows and various code sequence variants [18]. In
summary, existing approaches fail to synthesize hardware-specific
instructions for the target model, limiting the performance of the
generated code.

Observation. We observed that considering hardware-specific
instruction synthesis from a model-centric perspective can effec-
tively address the above issues. In other words, model contains
rich high-level semantics, e.g., block parameters and connectivity,
and these semantics provide benefits when synthesizing hardware-
specific instructions during code generation. For instance, satu-
ration is an inherent parameter of Simulink block which can be
utilized to determine whether saturation-type instructions should
be synthesized, and analyzing connections between blocks allows
us to synthesize instructions like ABSDIF in Tricore without the
need to account for complex control flows.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Tricore
Rule Libran Platform ARM
— Y Configuration RISC-V

SelecteleuIes

Zehong Yu, Zhuo Su, Rui Wang, and Yu Jiang

Updated
Dataflow Graph

Graph Refactoring

|
|
|
1
|
->_l »I Dataflow Latency-Aware
—
. : [Graph]_’ Match Graph Update
|
1
1
|

! I

! : Optimizable Blocks Instruction |1

: 1 Translation :

1 | |

! - ; Schedule !

1 |

1 1 Convert : # (/)
|

L ! Embedded

1 1 Code . I Code

1 1 Basic Blocks Synthesis |

1 |

Hardware-Oriented Synthesis

Figure 2: The overview of Amica. It mainly contains two key components. (1) Graph Refactoring focuses on iteratively
using appropriate optimization rules to update the dataflow graph. (2) Hardware-Oriented Synthesis is utilized to synthesize
corresponding instructions for optimizable blocks and generate embedded code.

This motivates us to design AMIca, which aims to leverage model
semantics to effectively synthesize appropriate hardware-specific
instructions to maximize performance improvement. AMICA proac-
tively crafts optimization rules based on the critical model seman-
tics, including block parameters, connections, data types, etc., and
then matches these rules with the model dataflow graph. To maxi-
mum performance improvement, AMICA iteratively selects the rule
which minimizes execution latency for instruction synthesis, during
the optimization process.

4 Design

In this section, we detail the design of Amica, an efficient code gen-
erator by synthesizing hardware-specific instructions to enhance
performance. Figure 2 shows the overall framework of Amica,
which consists of two key components. (1) Graph Refactoring;:
Amica first parses the Simulink model to obtain essential contents
including block properties, connections, inports/outports, etc, and
utilizes them to construct dataflow graph as the preparation step.
Meanwhile, AMicA crafts a series of optimization rules represented
as dataflow subgraphs with constraints related to block parame-
ters, data types and other block properties. For the functionally
equivalent but semantically different instructions, AMICA merges
them into the same optimization rule, while developing distinct
optimization rules for platform-specific instructions. Based on the
target platform, AMica selects applicable rules from rule library and
matches them with dataflow graph to obtain optimization candi-
dates. The candidate that maximizes latency reduction is chosen to
update the dataflow graph, which will be used in next optimization
iteration. The updated blocks are labeled as optimization blocks. (2)
Hardware-Oriented Synthesis: For the refactored dataflow graph,
Amica conducts topology-based analysis on the connections be-
tween blocks to derive translation sequence. For optimizable blocks,
Awmica synthesizes the corresponding instructions for translation
in accordance with instruction syntax and block properties such as
data type and parameters. For basic blocks, Amica directly gener-
ates code based on their functionalities. After that, the generated
code snippets are integrated together according to the translation
sequence, yielding high-efficiency embedded code for deployment.

4.1 Graph Refactoring

Preparation. The Simulink model is encapsulated as a Zip file
containing various components, including graphical structures and
model parameters. AMICA first unzips the target model, and then
parses the obtained files to extract critical dataflow information for
constructing the dataflow graph, such as blocks, inports/outports,
and connections, and incorporates block properties into the corre-
sponding nodes of the dataflow graph, including data type, data
length, and parameters.

Rule Library

o
@| [sub —{ nss |

®

ition

Rule Type: Reciprocal Square Root
Data Type: float, double
Parameter: Operator = “rSqrt”
Platform: Tricore, ARM, RISC-V
Rule Type: ABS Difference

Data Type: int, unsigned int
Parameter: None

Platform: Tricore, ARM

Rule Type: Saturation Add
Data Type: int, unsigned int
Parameter: Saturation = “On”
Platform: Tricore, ARM, RISC-V

Rule Type: Condition Add
Data Type: int, unsigned int
Parameter: None
Platform: Tricore

false

Figure 3: Typical optimization rules in rule library. The left
parts are dataflow subgraphs of the corresponding rules,
while the right parts are the required constraints.

To filter irrelevant contents for optimization, AMICA crafts all
optimization rules based on the dataflow graph and associated block
properties, and encapsulates them into a rule library for subsequent
usage. Specifically, each optimization rule is essentially a dataflow
subgraph with constraints on block parameters, data types, and
other properties relevant to instruction synthesis. Figure 3 shows
some typical optimization rules in the rule library. In these rules,
the left parts represent the dataflow subgraphs, while the right parts
are the required constraints. Using the ‘Saturation Add’ rule as an

Synthesizing Hardware-Specific Instructions for Efficient Code Generation of Simulink

illustrative example. The subgraph for this rule is a Add block with
constraints requiring that the block’s ‘saturation’ parameter is en-
abled and the data type is either ‘int’ or ‘unsigned int’. Besides, for
the functionally equivalent but semantically different instructions
across different platforms, AMica merges them into the same opti-
mization rule. For instance, the ‘platform’ constraint of ‘Saturation
Add’ rule has three values: Tricore, ARM, and RISC-V. For platform-
specific instructions, AMica designs dedicated optimization rules,
such as ‘Condition Add’ rule in Figure 3.

Platform Configuration. Before performing specific optimiza-
tions, AMIcA configures itself according to the deployment platform
of the generated code. It first selects applicable optimization rules
from the rule library based on the ‘platform’ constraint. Then, using
the corresponding instruction set documentation, AMIcA estimates
the potential reduction in execution latency achieved by utilizing
the relevant hardware instructions. This estimation is used in the
subsequent optimization process.

Latency-Aware Match. For the selected optimization rules,
Amica employs a latency-aware method to obtain the optimal
rules which can maximize execution latency reduction for updat-
ing the dataflow graph. The process of latency-aware match is
detailed in Algorithm 1. First, for each selected rule, Amica invokes
GraphMatch function to match it with the dataflow graph to de-
termine if the rule is applicable (line 6). We present the procedure
of GraphMatch in the following content. The matched rules, i.e.,
GraphMatch(G, r) == true, are optimization candidates for fur-
ther utilization (line 7). Since the same block may correspond to
multiple candidate optimization rules, AMica selects the rule that
maximizes the reduction in execution latency for optimization. In
this way, AMICA not only enhances the performance improvement,
but also resolves potential conflicts. For each candidate rule, AMica
first obtains its execution latency reduction calculated in platform
configuration (line 13). Amica then compares this value with the
current maximum latency reduction (line 14). If the new value is
greater, AMICA uses it to update the maximum value and designates
the current rule as the optimal one (line 15-16).

The procedure of GraphMatch is as follows. The subgraph of
the optimization rule generally consists of multiple blocks, and the
results are determined after executing the last block. We called the
last block as feature block. For example, in Figure 3, ABS block and
Switch block are feature blocks of ‘ABS Difference’ rule and ‘Condi-
tion Add’ rule, respectively. Based on this observation, GraphMatch
is a back-to-front matching process, where the feature block is
matched first, followed by its parent blocks. Specifically, for a target
optimization rule r, AMIicA begins by matching its feature block
by with candidate blocks b, of dataflow graph G. Note that, Amica
not only matches the block type, but also data type, parameter,
and other constraints. If any of these constraints are violated, the
matching process fails. Conversely, if the initial match is successful,
Amica recursively applies the matching process with parent blocks
of by and b.. If all the blocks of the selected optimization rule r are
successfully matched, AMica records the corresponding matched
subgraphs of dataflow graph G as optimization candidates.

Graph Update. Amica updates the dataflow graph using the
obtained optimal rule by encapsulating the matched subgraph into
a new block. The inports and outports of the subgraph become
the inports and outports of this new block. Besides, AmIcaA assigns

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Algorithm 1: Latency-Aware Match

Input: G: Dataflow graph of target model
R : Optimization rules
Output: r,: The optimal rule for graph update
1 Function LatencyAwareMatch(G, R):

2 // Candidate Rules for optimization

3 Candidates «— @

4 for r in R do

5 // Match subgraphs and constraints
6 if GraphMatch(G, r) == true then
7 Candidates.append(r)

8 end

9 end
10 // The maximum value of latency reduction
11 max < 0
12 for c in Candidates do

13 reduce « c.latencyReduction()
14 if max < reduce then

15 max « reduce

16 ro < C

17 end
18 end
19 return r,

20 End Function

corresponding functionality to this block based on the rule type and
labels it as optimizable. Figure 4 shows an example that illustrates
the process of latency-aware match and graph update. Suppose
both of ABS blocks enable the ‘saturation’ parameter, and the target
platform is Tricore. Therefore, this dataflow graph has three can-
didate optimization rules: Rule 1 for ‘Saturation ABS Difference’,
Rule 2 for ‘Saturation ABS’, and Rule 3 for ‘Saturation ABS’. Since
Rule 1 reduces the maximum execution latency, AMIcA selects it
for updating dataflow graph. Subsequently, AMIcA replaces the cor-
responding subgraph with a new block called Saturation ABSDIF,
preserving the original inports and outports. Note that, this is an it-
erative process. AMICA continuously performs latency-aware match
to obtain optimization candidates, and then selects the optimal one
for updating the dataflow graph until there are no candidates.

4.2 Hardware-Oriented Synthesis

Schedule Convert. For the dataflow graph, Amica employs a
topology-based method to analyze connections between blocks
and derive the translation sequence in accordance with blocks
dependencies. The blocks in the sequence are categorized into two
types: optimizable blocks and basic blocks. For optimizable blocks,
Awmica synthesizes corresponding hardware-specific instructions to
enhance performance. In contrast, AMIcA directly translates basic
blocks into code based on their inherent functionalities.
Instruction Translation. AMica begins by selecting the appro-
priate hardware-specific instructions based on the target platform,
block functionalities, and data type. These factors can lead to differ-
ent instructions for synthesis. For example, consider the ‘Saturation
Add’ rule, the choice between ‘int’ and ‘unsigned int’ data type
requires distinct instructions for synthesis. Then, Amica generates
inline assembly code to represent the corresponding instructions,

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

~~ Ruleft

1
1

: [EBE] Updatei
1

1

1

©

Figure 4: An example illustrates the process of latency-aware
match and graph update. The subgraphs framed by the
dashed line represent the parts that can be optimized.

and maps the input and output data to the inports and outports
of the target block, respectively. Figure 5 presents the synthesized
inline assembly code for the SQRT block with float data type on
the Tricore, ARM, and RISC-V platforms. Notably, since the Tri-
core platform only supports the QSEED. F instruction for calculating
the reciprocal square root, AMICA compensates by multiplying the
result of QSEED.F by the value of In to obtain the square root.

// Tricore

__asm ("QSEED.F %@, %1" : "=d"(out) : "d"(In));
__asm ("MUL %@, %1" "=d"(out) : "d"(In));
// ARM

__asm ("FSQRT %s@, %s1" "=w" (Out) "w"(In));
// RISC-V

__asm ("FSQRT.S %0, %1" "=f"(Out) : "f"(In));

Figure 5: An example shows the synthesized instructions
for SQRT block with float data type on the Tricre, ARM, and
RISC-V platforms.

Code Synthesis. For basic blocks, Amica supports customized
DLL (Dynamic Link Library) files to generate the corresponding
code based on their functionalities. Note that, the same type of
blocks may have differences in block properties, such as data type,
leading to the different generated code. Therefore, AMICA configures
these vital properties as parameters of the corresponding DLL file
for generating precise code. Subsequently, the code generated for
basic blocks and optimizable blocks is synthesized, forming the
function code of the target model in accordance with the translation
sequence above. Additional relevant information is encapsulated in
certain header files for later usage. Finally, all of the above code is
bundled together for deployment.

5 Implementation

We have developed Amica 1 in C++ with 22,156 lines of code. For
optimization, AMicA implements various optimization rules, encap-
sulated in the rule library for Tricore, ARM, and RISC-V platforms.
These include but not limited to saturation-type rules, rounding-
type rules, type-conversion rules, and complex-operation rules.

The implementation and the results are available at the repository. https://anonymous.
4open.science/r/ AMICA-58C7

Zehong Yu, Zhuo Su, Rui Wang, and Yu Jiang

Additionally, AMIca supports a wide range of Simulink blocksets
for code generation, such as math operation blocksets and DSP
system blocksets, which are frequently used in embedded scenarios.
For each supported block, Amica designs the corresponding code
library in accordance with the block type and parameters.

6 Evaluation

In this section, we evaluate the effectiveness of Amica by conduct-
ing a series of experiments. Our evaluation addresses the following
research questions:

e RQ1: How well does Amica perform compared to other
state-of-the-art code generators? (§6.1)

o RQ2: Whether or not AMica is still effective under high-
level compiler optimization? (§6.2)

e RQ3: How well does Amica perform in terms of assembly
code size and memory usage? (§6.3)

e RQ4: Is the performance achieved by Amica statistically
significant? (§6.4)

Evaluation Setup: To assess the effectiveness of our approach,
we compared AMIcA with two state-of-the-art code generators,
Simulink Embedded Coder [7], Mercury [33] and Frodo [32]. The
comparison experiments were conducted on three embedded plat-
forms using GCC for compilation, Tricore (Infineon TC387), ARM
(Cortex A72), and RISC-V (XuanTie C906). We evaluated the per-
formance of Amica on benchmark Simulink models collected from
both academia and industry [21, 26, 33]. Table 1 shows the de-
tails of benchmark models, including their functionality, and num-
ber of blocks. The models range in size from 57 to 495 blocks,
covering a spectrum of realistic model complexities. Besides, se-
lected models include a diverse set of Simulink block types, such as
commonly-used blockset, discrete blockset, math-operation block-
set, DSP blockset, and subsystems. Because Simulink Embedded
Coder is an integrated tool for Simulink, we use Simulink as an
abbreviation in the following experimental content.

Table 1: Details of benchmark models.

Model Functionlity #Block
ABS Safety anti-lock braking system 130
HighPass HighPass filter model 57
Temperature Automotive temperature control system 70
HybridPass HybridPass filter model 158
RTVibrate Equipment preservation model 91
RAC Robot arm control system 495
BLDC Brushless DC motors 198
Quat UAV attitude control system 288
Spray Startup and pressure regulation control system 111

6.1 Comparison Experiments on -02 Flag

Developers tend to use -02 flag for embedded scenarios, because it
delivers a balanced optimization that enhances performance with-
out sacrificing stability, assembly code size, or predictability. There-
fore, to evaluate the performance of Amica compared with other
code generators, we conducted experiments on the benchmark
models using this compilation setting. To minimize statistical er-
rors, each generated code was executed 100,000 times to obtain

https://anonymous.4open.science/r/AMICA-58C7
https://anonymous.4open.science/r/AMICA-58C7

Synthesizing Hardware-Specific Instructions for Efficient Code Generation of Simulink

average execution times. Table 2 presents the experimental results
under the -02 flag. On the Tricore, ARM, and RISC-V platforms,
the execution time of the code generated by Amica is 1.35X - 4.62X,
1.46X - 4.58%, and 1.35X - 2.19x faster, respectively, compared to
the code generated by Simulink. Compared to the code generated
by Mercury, the execution time is 2.43X - 5.29X, 2.06X - 8.33X, and
1.84X% - 3.72x faster on the respective platforms. Besides, compared
to the code generated by Frodo, the execution time is 2.80X - 5.42X,
1.88% - 8.36X, and 1.84X - 3.72X faster on the respective platforms.
These results indicate that Amica achieves significant performance
improvement over other code generators.

Table 2: Comparison of the code execution time using -02
flag on Tricore, ARM, and RISC-V platforms (Unit: Second).

AmiIcA Improvement

Model Platf imulink M Frodo Amica
ode atform |Simulink Mercury Frodo Amic Simulink Mercury Frodo
Tricore | 21.05 3873 33.77 732 | 287X 529X 4.61X
ABS ARM 1.83 3.33 334 040 | 458X 833X 836X

RISC-V 5.22 7.56 7.66 239 | 2.19x 3.17X 3.21X
Tricore | 22.08 27.87 3447 636 | 347X 438X 542X
HighPass ARM 1.30 1.90 1.98 0.52 | 250X 3.64X 3.79X

RISC-V 2.83 4.55 455 196 | 1.44x 232X 232X
Tricore | 29.08 3429 3388 11.76 | 247X 292X 2.88X
Temperature| ARM 1.64 2.34 217 112 1.46X 2.08xX 1.90x
RISC-V | 3.78 6.17 6.17 239 | 158X 259X 259X
Tricore | 41.16 7292 73.80 1891 | 2.18X 3.86X 3.90X
HybridPass | ARM 2.85 3.27 299 159 | 179X 2.06X 1.88X
RISC-V 7.02 8.03 8.01 436 | 1.61x 1.84X 1.84X
Tricore | 12.65 26.03 2636 8.13 | 156X 3.20X 3.24X
RTVibrate ARM 1.12 2.07 1.97 0.67 | 1.67x 3.10X 2.95X
RISC-V 1.82 3.99 429 128 | 143X 3.12X 3.36X
Tricore | 120.22 154.47 176.74 38.90 | 3.09X 3.97X 4.54X
RAC ARM 5.65 10.48 1047 1.89 | 2.99%X 555X 5.54X
RISC-V | 17.93 29.22 24.28 10.28 | 1.74X 2.84X 236X
Tricore | 122.44 11198 112.48 26.49 | 4.62X 4.23X 4.25X
BLDC ARM 4.24 5.64 551 1.81 | 234X 3.12X 3.05X
RISC-V | 11.41 16.57 17.08 7.09 | 1.61X 234X 241X

Tricore | 32.26 3032 3490 1247 | 259X 243X 280X
Quat ARM 1.14 2.18 2.25 0.63 1.80X 3.44X 3.55X
RISC-V 3.67 8.42 8.48 272 135X 3.09X 3.12X

Tricore | 27.88 72.85 69.02 20.63 | 1.35X 3.53X 3.35X
Spray ARM 0.99 1.57 1.57 0.67 1.48X 2.34X 235X
RISC-V 3.85 10.63 10.64 2.86 135X 3.72X 3.72X

Simulink outperforms Mercury on all benchmark models but
does not perform as well as Amica. Simulink employs various
optimization techniques for code generation, such as expression
folding and variable reuse. These methods reduce the number of
intermediate variables and assignment operations by reusing the
output ports of previously executed blocks for subsequent data
transfers. By analyzing the assembly code, we observed that when
manipulating array data, the redundant assignment operations
eliminated by Simulink are not optimized away by GCC under
the -02 flag. This limitation arises because, in the C language, an
array name is essentially a pointer, and GCC must consider the
possibility that different arrays might point to overlapping memory
regions, which restricts its ability to apply aggressive optimization
strategies. However, Simulink can accurately determine this, as
Simulink model semantics ensure that there is no data space overlap
between different blocks.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Mercury focuses on enhancing performance by generating in-
struction pipeline-friendly codes, and it interleaves the translation
of independent blocks to avoid pipeline stalls. However, on bench-
mark models, its overall performance is relatively limited. This
limitation stems from the fact that GCC, when using -02 flag for
compilation, already implements similar techniques. For instance,
the -fschedule-insns flag schedules independent instructions to
fully utilize the processor pipeline during execution. As a result,
the optimizations implemented by Mercury offer minimal addi-
tional benefits over the inherent capabilities of GCC, and the code
generated by Mercury does not perform as well as that produced
by Simulink and AmicaA. As for Frodo, it focuses on eliminating
redundant calculations caused by data-truncation blocks. These
blocks select specific data for further usage, and the calculations
related to unselected data become redundant. However, benchmark
models do not involve such operations, and the code generated by
Frodo is unsatisfactory in this context.

80003818: 1d.w d15, [a2+]0x4 80003800: 1d.w d15, [a2+]0x4
8000381a: mov de/d1,d15 80003802: 1d.w do, [al5+]ox4
800038le: 1d.w d15, [al5+]0x4 80003804: adds d15,d15,de
80003820: mov d2/d3,d15 80003808: st.w [a4+]0x4,d15
80003824: addx de,de,d2

80003828: addc d1,d1,d3 Compile (b) AMICA Assembly Code
8000382c: ge.u di5,d4,de

80003830: and.eq d15,d1,d5

80003834: or.lt d15,d1,d5
80003838: jnz d15,0x8000383e
8000383a: mov do,d4
8000383c: jg 0x80003858

8000383e: movh.a a6,#0x8000
80003842: lea a6, [a6]ox3eac
80003846: 1d.d d2/d3, [a6]0x0
8000384a: lt.u d15,de,d2
8000384e: and.eq di15,d1,d3

80003852: or.lt di15,d1,d3 Qy=Qu>>8
80003856: cmov de,d15,d2 WE :’Eﬁ“s
80003858: st.w [ad+]0x4,d0 Y

(a) Simulink Assembly Code (c) Part of HighPass Model
Figure 6: An example illustrates the reason of the perfor-
mance gap between Simulink and Amica. The subfigure (a)
and subfigure (b) show the assembly code of Simulink and
Amica, for Saturation Add block on the Tricore platform.
The subfigure (c) shows a portion of the HighPass model, and
the Saturation Add block is framed by red dashed line.

Compared to other code generators, Amica converts the Simulink
model into dataflow graph, and uses applicable optimization rules
to modify the dataflow graph in accordance with the target plat-
form and execution latency. In this way, AMICA can synthesize
appropriate hardware-specific instructions for optimizable blocks,
thereby improving overall performance of the generated code. The
experimental results illustrate other code generators, even state-of-
the-art compiler, is unable to effectively utilize hardware-specific
instructions. To further demonstrate this point, we also analyzed
the corresponding assembly codes. For example, consider the High-
Pass model shown in Figure 6(c). Figure 6(a) and Figure 6(b) shows
the compiled assembly code of Simulink and AMica, respectively,
for Saturation Add block framed by the red dashed line on the
Tricore platform. Since Saturation Add block should determine
whether the result exceeds the upper or lower bounds of ‘int’, the
corresponding assembly code of Simulink contains numerous com-
parison and conditional instructions, e.g., ge.u, jnz, and and. eq.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

The assembly code of Mercury exhibits a similar pattern. In contrast,
as shown in Figure 6(b), Amica accomplishes this using a single
instruction. Consequently, AmICA achieves significant performance
improvement over Simulink and Mercury. Moreover, we observed
that the performance improvement of AmMica varies across different
platforms. In particular, Amica achieves the greatest performance
improvement on the ARM platform. This is because AMica synthe-
sizes a set of hardware-specific instructions on the ARM platform,
and a single hardware-specific instruction within the ARM platform
reduces more execution latency compared to other platforms.

6.2 Comparison Experiments on -03 Flag

To assess whether AmMIcA remains effective under high-level com-
piler optimizations, we conducted additional comparison experi-
ments using GCC with -03 flag enabled. As in our previous ex-
periments, the generated code was repeatedly executed 100,000
times to obtain reliable average execution times and minimize sta-
tistical variability. Figure 7 illustrates the experiment results. On
the Tricore, ARM, and RISC-V platforms, the execution times of
the code generated by AmIca is 1.35X - 4.57%, 1.98X - 5.12%, and
1.29% - 2.41x faster, respectively, compared to the code generated by
Simulink. When compared to the code generated by Mercury, the ex-
ecution time is 2.90X - 5.45%, 2.17X - 7.04X, and 1.69X - 3.75% faster
on the respective platforms. Besides, compared to the code gener-
ated by Frodo, the execution time is 2.77X - 5.54X%, 2.16X - 6.46X,
and 1.68X - 3.76X faster on the respective platforms. These results
clearly demonstrate that Amica continues to deliver significant
performance improvement. Moreover, even with the highest opti-
mization level, GCC fails to effectively leverage hardware-specific
instructions, underscoring the importance of synthesizing such in-
structions in embedded scenarios where performance and resource
constraints are critical.

We observed that, in general, the performance improvement
of Amica is higher under -03 flag, compared with the experi-
ments under -02 flag. By analyzing the corresponding assembly
code, we found that under -03 flag, GCC employs various effec-
tive optimization techniques and Amica benefits from these opti-
mizations. For example, GCC enables loop-related optimizations
such as -floop-unroll-and-jamand -fpredictive-commoning.
These optimizations help to further eliminate redundant assign-
ments, conditional checks, and calculations that are not specifically
addressed by Amica. Besides, on the ABS model with the ARM plat-
form shown in Figure 7(b), the performance improvement offered
by Amica is less pronounced. A detailed analysis of the assembly
code indicates that the code generated by Amica exhibits only mi-
nor differences between the -02 and -03 flag, whereas the assembly
code of Simulink and Mercury undergoes significant changes. This
suggests that in some cases, hardware-specific instruction synthesis
may limit the effectiveness of the optimization techniques employed
by the compiler. Nonetheless, given the substantial overall perfor-
mance gains achieved by AMIca, it is still worthy.

6.3 Comparison Experiments on Other Metrics

Embedded devices often have limited memory resources, and the
available memory for both the program code and data is typically
much smaller than general-purpose devices. Therefore, to further

Zehong Yu, Zhuo Su, Rui Wang, and Yu Jiang

6.00 m Simulink-O2 m Simulink-O3 Mercury-02 m Mercury-O3 Frodo-02 mFrodo-O3

ABS HighPass Temperature HybridPass RTVibrate ~ RAC BLDC Quat Spray

(a) Execution Improvement on Tricore

® Simulink-O2 = Simulink-O3 Mercury-O2 mMercury-O3 Frodo-O2 ®Frodo-O3

-
2 5.00
=
2 400
2
&
3.00
2.00
1.00
0.00 —
ABS HighPass Temperature HybridPass RTVibrate ~ RAC BLDC Quat Spray
(b) Execution Improvement on ARM
4.00
®mSimulink-O2 ® Simulink-O3 Mercury-O2 ® Mercury-O3 Frodo-O2 ®Frodo-O3
3.50
3.00
£.2.50
=]
—?d 2.00
2z
@150
1.00
0.50
0.00 -

ABS HighPass Temperature HybridPass RTVibrate RAC BLDC Quat Spray

(c) Execution Improvement on RISC-V

Figure 7: The execution improvement of the code generated
by Amica versus other code generators on the Tricore, ARM,
and RISC-V platforms under -02 flag and -03 flag,.

evaluate the quality of the code generated by Amica, we collected
the assembly code size, data segment size, and BSS (Block Started
by Symbol) segment size of the compiled programs.

Evaluation on Assembly Code Size. Table 3 presents the code
size of the compiled program. On the Tricore platform, the code
generated by Amica is reduced by 11% - 53%, 26% - 42%, and 24% -
41% compared to Simulink, Mercury, and Frodo, respectively. On
the ARM platform, Amica reduces the code size by 8% - 30%, 11%
- 50%, and 15% - 49%, relative to Simulink, Mercury, and Frodo,
respectively. On the RISC-V platform, Amica results in a code size
reduction of 6% - 26%, 6% - 39%, and 9% - 40% compared to Simulink,
Mercury, and Frodo, respectively.

In general, the size of the code generated by Amica is the small-
est, compared to Simulink, Mercury, and Frodo. This reduction is
due to that Amica synthesizes hardware-specific instructions to
execute complex operations that would typically require multiple
instructions. For example, consider the HighPass model shown
in Figure 6. To perform saturation addition, the assembly code of
Simulink takes 20 instructions to check if the results exceeds the
upper or lower bounds of ‘int’, while Amica only takes 4 instruc-
tions to accomplish the same task. The assembly code of Mercury
follows a similar pattern to Simulink. These statistics illustrate that
Amica not only improves the performance of the generated code
but also significantly reduces its size. This indicates that AMIcA is

Synthesizing Hardware-Specific Instructions for Efficient Code Generation of Simulink

Table 3: Comparison of the assembly code size on Tricore,
ARM, and RISC-V platforms (Unit: Byte).

Amica Reduction
Simulink Mercury Frodo
Tricore 2100 1784 1728 1320 37% 26% 24%
ABS ARM 3897 3972 3916 2879 26% 28% 26%
RISC-V 2627 2501 2701 2024 23% 19% 25%
Tricore 1984 1544 1584 928 53% 40% 41%
HighPass ARM 3244 3391 3395 2871 11% 15% 15%

Model Platform|Simulink Mercury Frodo Amica

RISC-V | 2147 2136 2213 2012 6% 6% 9%
Tricore 1752 1952 1924 1132 35% 42% 41%
Temperature| ARM 3253 3969 3881 2997 8% 24% 23%

RISC-V | 2388 2466 2619 2160 10% 12% 18%
Tricore | 2848 2512 2572 1536 46% 39% 40%
HybridPass ARM 3680 4503 4599 3331 9% 26% 28%
RISC-V | 2652 2892 2983 2446 8% 15% 18%
Tricore 1576 1588 1608 980 38% 38% 39%
RTVibrate ARM 3437 3999 3815 3035 12% 24% 20%
RISC-V | 2471 2329 2603 1833 26% 21% 30%
Tricore | 3224 3720 3972 2644 18% 29% 30%
RAC ARM 4982 7297 7257 3672 26% 50% 49%
RISC-V | 3880 5323 5365 3242 16% 39% 38%
Tricore | 3372 3032 3108 1852 45% 39% 40%
BLDC ARM 4697 6133 6153 3403 28% 45% 45%
RISC-V | 3609 4339 4505 2725 24% 37% 40%
Tricore | 3664 3774 4020 2764 25% 26% 31%
Quat ARM 4651 5332 5484 3863 17% 28% 30%
RISC-V | 3925 5341 5305 3172 19% 41% 40%
Tricore 1844 2400 2508 1648 11% 31% 34%
Spray ARM 3967 5067 5067 3535 11% 30% 30%
RISC-V | 3047 3593 3569 2801 8% 22% 22%

more suitable for embedded scenarios, as minimizing memory us-
age allows embedded devices to handle more complex tasks within
limited hardware constraints simultaneously.

We found that the reduction of assembly code size varies across
platforms. The code size reduction on the Tricore platform is more
significant than on the ARM and RISC-V platforms. This is due to the
varying numbers of synthesized hardware-specific instructions. For
the benchmark models, AMica synthesizes more hardware-specific
instructions on the Tricore platform, which leads to a greater re-
duction in assembly code size. We also observed that the assembly
code reduction for the HighPass model on the RISC-V platform is
relatively small (6% - 9% reduction). By analyzing the generated
code, we found that on the RISC-V platform, AmicA matches 2
rules with the HighPass model and synthesizes 7 hardware-specific
instructions, which are fewer than that on other platforms and for
other models. Although the number of synthesized instructions is
relatively small, Amica still achieves 1.44X and 2.32X performance
improvement, compared to Simulink and Mercury with -02 flag.
This highlights the importance of synthesizing hardware-specific
instructions to bypass time-consuming regular instructions.

Furthermore, we observed that the assembly code sizes for the
same model vary across different platforms. Specifically, given the
same C code, the assembly code on the ARM platform is larger
than that on the RISC-V and Tricore platforms. By analyzing the
corresponding assembly code, we found that ARM requires more in-
structions for the ABI (Application Binary Interface), which results
in a higher number of instructions for function calls, parameter
passing, and stack management. The differences in the instruction

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Table 4: Comparison of the data segment usage and BSS seg-
ment usage (Unit: Byte).

Data Segment BSS Segment
Simulink Mercury Frodo Amica|Simulink Mercury Frodo Amica
Tricore 640 640 640 640 1360 1344 1344 1344
ABS ARM 712 680 680 680 1320 1296 1296 1296
RISC-V | 648 600 600 600 1304 1288 1288 1288
Tricore 612 608 608 608 960 960 960 960
HighPass ARM 656 656 656 656 912 912 912 912
RISC-V | 600 592 592 592 904 904 904 904
Tricore 620 620 620 620 1104 1088 1088 1088
Temperature] ARM 656 664 664 664 1072 1040 1040 1040
RISC-V 616 592 592 592 1048 1032 1032 1032
Tricore 580 584 584 584 1700 1684 1684 1684
HybridPass | ARM 640 656 656 656 1712 1680 1680 1680
RISC-V 592 592 592 592 1688 1672 1672 1672
Tricore 600 604 604 600 800 784 784 784
RTVibrate ARM 672 680 680 656 816 784 784 784
RISC-V | 608 592 592 584 792 776 776 776
Tricore 620 592 592 588 3124 3116 3116 3116
RAC ARM 704 680 680 648 3112 3088 3088 3088
RISC-V | 640 608 608 592 3096 3080 3080 3080
Tricore 620 592 592 588 3124 3116 3116 3116
BLDC ARM 704 680 680 648 3112 3088 3088 3088
RISC-V | 640 608 608 592 3096 3080 3080 3080
Tricore 620 592 592 588 3124 3116 3116 3116
Quat ARM 704 680 680 648 3112 3088 3088 3088
RISC-V 640 608 608 592 3096 3080 3080 3080
Tricore 620 592 592 588 3124 3116 3116 3116
Spray ARM 704 680 680 648 3112 3088 3088 3088
RISC-V | 640 608 608 592 3096 3080 3080 3080

Model Platform|

set architectures of these platforms also lead to variations in the
size and complexity of the generated assembly code. Tricore, as an
automotive-grade platform, demands stricter resource constraints.
Therefore, the instruction set architecture of Tricore places greater
emphasis on generating compact assembly code, which leads to the
smallest code size compared to ARM and RISC-V.

Evaluation on Data Segment and BSS Segment. We also col-
lected the data segment size and BSS segment size of the compiled
program to further evaluate Amica, and the detailed statistics are
shown in Table 4. Our finding reveals that the sizes of both the
data segment and BSS segment remain consistent across different
code generators and platforms. The data segment is responsible for
storing initialized global and static variables. In the context of the
model code, the primary contributors to data segment usage are the
referenced header files and model configuration parameters, such
as stdlib.h. As a result, the data segment size is similar across
code generated by different code generators. The BSS segment, on
the other hand, is used to store uninitialized global and static vari-
ables. In the case of the model code, the main contributors to BSS
segment usage are input and output data. Consequently, the BSS
segment size is nearly identical across various code generators.

6.4 Hypotheses Testing

To assess the statistical significance of AmicA’s performance im-
provements, we repeated the comparison experiments 10 times
across different platforms and compiler optimization flags. The
following hypotheses are tested:

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Zehong Yu, Zhuo Su, Rui Wang, and Yu Jiang

Table 5: Hypotheses testing results on performance improvement.

Awmica Improvement under -02 flag Awmica Improvement under 03 flag
Model Platform Simulink Mercury Frodo Simulink Mercury Frodo
P Value Cohen’sd | P Value Cohen’sd | P Value Cohen’sd | PValue Cohen’sd | PValue Cohen’sd | P Value Cohen’sd
Tricore | 5.49e-55 8.08e+05 | 1.44e-56 1.21e+06 | 2.10e-42 3.23e+04 | 4.18e-55 8.33e+05 | 1.33e-55 9.46e+05 | 2.23e-55 8.93e+05
ABS ARM 7.73e-33 2.80e+03 | 3.03e-22 1.86e+02 | 8.25e-17 4.63e+01 | 5.49e-32 2.25e+03 | 5.38e-36 6.27e+03 | 9.66e-37 7.59e+03
RISC-V | 2.15e-24 3.22e+02 | 2.71e-25 4.06e+02 | 1.54e-25 4.32e+02 | 6.70e-26 4.74e+02 | 1.19e-26 5.74e+02 | 9.44e-27 5.89e+02
Tricore | 4.57e-54 6.38e+05 | 6.18e-55 7.97e+05 | 5.03e-55 8.16e+05 | 2.05e-54 6.98e+05 | 9.71e-56 9.79e+05 | 2.36e-55 8.87e+05
HighPass ARM 6.26e-29 1.03e+03 | 5.50e-30 1.35e+03 | 9.43e-30 1.27e+03 | 1.34e-30 1.58e+03 | 1.52e-29 1.20e+03 | 7.34e-30 1.30e+03
RISC-V | 1.54e-18 7.21e+01 | 7.79e-21 1.30e+02 | 1.59e-21 1.55e+02 | 1.58e-22 2.00e+02 | 1.29e-24 3.41e+02 | 9.29e-25 3.54e+02
Tricore | 7.68e-57 1.30e+06 | 6.53e-56 1.02e+06 | 2.40e-46 8.86e+04 | 3.12e-56 1.11e+06 | 3.24e-56 1.11e+06 | 1.06e-45 7.51e+04
Temperature ARM 4.69e-11 1.06e+01 | 2.74e-13 1.88e+01 | 2.23e-13 1.92e+01 | 1.40e-18 7.28e+01 | 5.58e-19 8.06e+01 | 5.29e-29 1.05e+03
RISC-V | 1.56e-30 1.55e+03 | 1.01e-33 3.50e+03 | 3.96e-33 3.01e+03 | 2.28e-31 1.92e+03 | 2.79e-35 5.22e+03 | 1.65e-33 3.32e+03
Tricore | 1.75e-58 1.98e+06 | 2.51e-59 2.45e+06 | 3.22e-37 8.57e+03 | 1.18e-58 2.06e+06 | 3.89e-60 3.02e+06 | 2.15e-38 1.16e+04
HybridPass ARM 6.19e-34 3.70e+03 | 1.36e-27 7.30e+02 | 2.78e-21 1.45e+02 | 3.53e-23 2.36e+02 | 2.20e-21 1.49e+02 | 2.36e-23 2.47e+02
RISC-V | 3.96e-27 6.49e+02 | 1.24e-29 1.23e+03 | 1.52e-27 7.21e+02 | 2.55e-16 4.08e+01 | 5.05e-17 4.89e+01 | 3.40e-19 8.52e+01
Tricore | 1.08e-51 3.48e+05 | 2.97e-54 6.70e+05 | 2.71e-54 6.77e+05 | 5.32e-20 1.05e+02 | 3.75e-21 1.41e+02 | 4.43e-18 6.41e+01
RTVibrate ARM 9.28e-22 1.64e+02 | 1.81e-24 3.28e+02 | 1.32e-19 9.47e+01 | 5.32e-20 1.05e+02 | 3.75e-21 1.41e+02 | 4.43e-18 6.41e+01
RISC-V | 9.43e-24 2.73e+02 | 4.57e-19 8.24e+01 | 1.04e-26 5.83e+02 | 1.42e-23 2.61e+02 | 1.65e-25 4.29e+02 | 1.66e-25 4.28e+02
Tricore | 8.06e-61 3.59e+06 | 5.30e-62 4.86e+06 | 2.05e-62 5.40e+06 | 1.26e-62 5.70e+06 | 1.24e-62 5.71e+06 | 1.99e-62 5.42e+06
RAC ARM 9.70e-23 2.11e+02 | 2.32e-26 5.33e+02 | 9.74e-26 4.54e+02 | 1.09e-18 7.48e+01 | 1.14e-20 1.24e+02 | 4.10e-20 1.08e+02
RISC-V | 1.29e-32 2.64e+03 | 3.75e-35 5.05e+03 | 1.73e-32 2.56e+03 | 8.10e-34 3.59e+03 | 1.71e-36 7.12e+03 | 1.39e-32 2.62e+03
Tricore | 6.53e-62 4.75e+06 | 2.90e-61 4.03e+06 | 4.35e-61 3.85e+06 | 7.72e-60 2.80e+06 | 8.33e-60 2.77e+06 | 5.39e-60 2.91e+06
BLDC ARM 5.90e-13 1.72e+01 | 1.10e-13 2.08e+01 | 1.24e-14 2.65e+01 | 5.82e-15 2.88e+01 | 5.75e-15 2.89e+01 | 3.70e-15 3.03e+01
RISC-V | 1.07e-25 4.50e+02 | 2.32e-29 1.15e+03 | 1.08e-28 9.68e+02 | 1.80e-24 3.29e+02 | 1.32e-28 9.46e+02 | 3.22e-29 1.11e+03
Tricore | 8.83e-57 1.28e+06 | 1.89e-55 9.10e+05 | 5.13e-57 1.36e+06 | 3.56e-54 6.56e+05 | 9.91e-56 9.77e+05 | 1.09e-56 1.25e+06
Quat ARM 2.69e-35 5.24e+03 | 1.07e-15 3.48e+01 | 6.00e-16 3.71e+01 | 1.02e-15 3.50e+01 | 3.94e-15 3.01e+01 | 1.64e-14 2.57e+01
RISC-V | 3.99e-23 2.33e+02 | 3.82e-30 1.40e+03 | 1.02e-28 9.74e+02 | 2.37e-31 1.91e+03 | 1.07e-26 5.81e+02 | 3.72e-26 5.06e+02
Tricore | 1.17e-53 5.75e+05 | 5.71e-59 2.24e+06 | 1.08e-59 2.69e+06 | 2.34e-55 8.88e+05 | 2.88e-59 2.41e+06 | 4.90e-59 2.28e+06
Spray ARM 1.25e-13 2.05e+01 | 1.99e-12 1.51e+01 | 1.42e-15 3.37e+01 | 3.61e-15 3.04e+01 | 2.44e-26 5.30e+02 | 5.06e-27 6.31e+02
RISC-V | 3.89e-13 1.81e+01 | 2.62e-17 5.26e+01 | 1.75e-05 2.39e+00 | 1.96e-14 2.52e+01 | 2.51e-28 8.81e+02 | 2.71e-29 1.13e+03

e Hj: There are no statistically significant improvements in
execution time between Amica and other code generators.

e Hj: Amica achieves statistically significant improvements
in execution time compared to other code generators.

Table 5 presents the results. All p-values (< 0.05) fall below
the standard significance threshold, confirming that the observed
performance differences are statistically significant. Moreover, the
consistently large Cohen’s d values indicate strong effect sizes,
which can be attributed to the highly stable execution times ob-
served across the 10 repeated runs (variation < 0.001%). These
findings further reinforce the reliability and robustness of Amica’s
performance improvements.

7 Discussion

Scalability of Amica. Currently, Amica supports code generation
from Simulink models for Tricore, ARM, and RISC-V platforms.
However, AMIcA can be extended to support code generation for
other platforms, such as the x86 platform. This extension would
require crafting optimization rules based on the corresponding
instruction set architecture and designing inline assembly code
for instruction translation in accordance with instruction syntax.
Besides, since for functionally equivalent but semantically different
instructions, AMICA merges them into the same optimization rule.
Therefore, for these instructions on the x86 platform, Amica can
simply incorporate them into the existing rules for optimization,
without repetitive implementations. In our future work, we plan to
explore a wider array of hardware-specific instructions for synthesis
and extend support to more platforms.

Code Quality & Correctness. To ensure the quality of the
generated code, we follow the MISRA [14] C security standard.
AMICA generates code in strict compliance with this standard for
elements such as functions, variables, and statements. To ensure
the correctness of the generated code, we have employed several
effective approaches. For each benchmark model, we generated a
variety of test cases as input data for the code generated by Amica
and other code generators. The execution results across all these
code generators were found to be consistent. Additionally, we veri-
fied the consistency between the execution of the generated code
and the simulation of the corresponding model, ensuring that both
yielded identical results. For each hardware-specific instruction for
synthesis, we also generated comprehensive test cases for observ-
ing and analyzing their execution behavior. Only those instructions
that strictly adhere to the specification and conform to the model
semantics are used by AmIca in code generation.

Threats to Validity. First, for models that lack semantics for
hardware-specific instruction synthesis, AMica may not deliver per-
formance improvements. In fact, complex mathematical operations
and saturation logic are prevalent in many real-world scenarios,
such as automotive systems and DSP systems, where Amica has
shown pronounced performance benefits. Besides, code optimiza-
tions targeting other aspects, such as expression folding, can be
combined with AmIca to generate more efficient code. Second, we
used GCC in the experiments for compiling the generated code,
as the compilation toolchains for Tricore and RISC-V are built on
GCC. This may limit the evaluation of Amica’s effectiveness on
other compilers. However, AmIcA is also compatible with other

Synthesizing Hardware-Specific Instructions for Efficient Code Generation of Simulink

compilers, e.g., Clang, and can yield performance improvements.
These gains stem from synthesizing hardware-specific instructions
that accelerate operations that are difficult for compilers to synthe-
size automatically. Besides, we conducted comparative experiments
on the ARM platform using Clang, and the results consistently
demonstrate the effectiveness of AmIca.

8 Related Work

Code Generators. Recently, many research and commercial tools
have made remarkable efforts to improve the performance of the
generated code. Specifically, Simulink Embedded Coder [7], the
built-in tool, specializes in generating production-quality code by
employing various high-level optimization techniques, including ex-
pression folding, variable reuse, etc. These powerful optimizations
make it widely utilized in embedded scenarios for code genera-
tion. In academics, there are some noteworthy works to generate
efficient code. DFSynth [23] disassembles the dataflow model into
blocks embedded within if-else or switch-case statements based on
schedule analysis, effectively bridging the semantic gap between
the code and the original dataflow model. Besides, DFSynth designs
tailored code templates for each block for code generation. Mercury
[33] leverages processor instruction pipeline specificity to improve
code performance. Mercury approximately estimates the execu-
tion latency of each block, and then uses the least penalty priority
to select the suitable blocks for translation, thereby reducing in-
struction pipeline stalls. Frodo [32], the most recent work, focuses
on eliminating redundant calculations within the code. When the
target model contains data-truncation blocks, Frodo recursively
determines the precise calculation range of each block to avoid
redundant calculations.

Different from these works, AmIca proactively leverages model
semantics for synthesizing hardware-specific instructions during
code generation to enhance performance. Based on both model se-
mantics and instruction set architectures, AMICA crafts optimization
rules for refactoring the dataflow graph of the target model, and em-
ploys a latency-aware approach which considers block constraints
and execution latency to select appropriate instructions.

Compiler Optimizations. For instruction selection, state-of-
the-art compilers, e.g., GCC and Clang, typically rely on pattern-
matching to identify and select the most suitable instructions dur-
ing translation, which has yielded significant improvement in syn-
thesizing arithmetic and vector instructions. In addition to these
techniques, some notable works [2, 5, 18, 30] propose alternative
approaches for instruction selection. Diospyros [30] uses equality
saturation for synthesizing vector instructions. However, it does
not efficiently support constraints and rule predicates, e.g., sat-
uration constraint and type-conversion enforcement, and is not
efficient enough for usage. Pitchfork [18] uses Halide [16] IR for
fast instruction selection, but its design is not ideally suited for
general-purpose scenarios, where toolchains are predominantly
based on GCC or Clang.

Different from previous works, AMIcA integrates pattern-matching
with model semantics to synthesize hardware-specific instructions
by considering both block parameters and connectivity. This ap-
proach enables a more precise and context-aware instruction selec-
tion process. Moreover, synthesizing hardware-specific instructions

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

during code generation is inherently more extensible, as it does
not depend on compilation toolchains tailored to specific scenarios,
thereby facilitating adaptability across a broader range of platforms.

9 Conclusion

This paper introduces AmIca, an efficient code generator for Simulink
models with hardware-specific instruction synthesis. Amica lever-
ages model semantics to craft optimization rules, and iteratively
selects the rule that minimizes execution latency for synthesizing
hardware-specific instructions. We evaluated Amica on benchmark
Simulink models across different platforms. The results that com-
pared with state-of-the-art code generators, AMIcA is 1.29X - 8.36X
faster in terms of execution time across, and reduces 6% - 53%
assembly code size.

Acknowledgments

This research is sponsored in part by the National Key Research
, Development Project (No. 2022YFB3104000) and NSFC Program
(No. U2441238, 62021002, 62372263), and the Fundamental Research
Funds for the Central Universities.

References

[1] Infineon Technologies AG. 2025. Infineon. https://www.infineon.com.

[2] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib Kamil, and
Alvin Cheung. 2022. Vector instruction selection for digital signal processors
using program synthesis. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS 22). Association for Computing Machinery,
New York, NY, USA, 1004-1016. doi:10.1145/3503222.3507714

[3] Saba Akram and Quarrat Ul Ann. 2015. Newton raphson method. International
Journal of Scientific & Engineering Research 6, 7 (2015), 1748-1752.

[4] Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai, Janos Szti-
panovits, and Sandeep Neema. 2006. Developing applications using model-driven
design environments. Computer 39, 2 (2006), 33-40.

[5] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Synthesizing an
instruction selection rule library from semantic specifications. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO ’18). Association for Computing Machinery, New York, NY, USA,
300-313. doi:10.1145/3168821

[6] David Christhilf and Barton Bacon. 2006. Simulink-Based Simulation Architecture
for Evaluating Controls for Aerospace Vehicles (SAREC-ASV). In AIAA Modeling
and Simulation Technologies Conference and Exhibit. 6726.

[7] Simulink Embedded Coder. 2025. Simulink Embedded Coder Documentation. Math-
Works. https://www.mathworks.com/solutions/embedded-code-generation.
html.

[8] Jon Friedman. 2006. MATLAB/Simulink for automotive systems design. In Pro-

ceedings of the Design Automation & Test in Europe Conference, Vol. 1. IEEE, 1-2.

Infineon. 2025. 32-bit AURIX™ TriCore™ Microcontroller. https://www.infineon.

com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/.

[10] Jean-Marc Jézéquel. 2008. Model driven design and aspect weaving. Software &

Systems Modeling 7 (2008), 209-218.

Yu Jiang, Han Liu, Houbing Song, Hui Kong, Rui Wang, Yong Guan, and Lui

Sha. 2018. Safety-assured model-driven design of the multifunction vehicle bus

controller. IEEE Transactions on Intelligent Transportation Systems 19, 10 (2018),

3320-3333.

Yu Jiang, Hehua Zhang, Huafeng Zhang, Xinyan Zhao, Han Liu, Chengnian Sun,

Xiaoyu Song, Ming Gu, and Jiaguang Sun. 2014. Tsmart-galsblock: A toolkit

for modeling, validation, and synthesis of multi-clocked embedded systems. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering. 711-714.

[13] Kimon Karras, Evangelos Pallis, George Mastorakis, Yannis Nikoloudakis,
Jordi Mongay Batalla, Constandinos X Mavromoustakis, and Evangelos Markakis.
2020. A hardware acceleration platform for Al-based inference at the edge.
Circuits, Systems, and Signal Processing 39, 2 (2020), 1059-1070.

[14] The MISRA Consortium Limited. 2025. MISRA C Documentation. https://misra.
org.uk/.

[15] Srihari Palli, Azad Duppala, Rakesh Chandmal Sharma, and LV Rao. 2022. Dy-
namic simulation of automotive vehicle suspension using MATLAB Simulink.
Int J Veh Struct Syst 14 (2022).

[

[11

[12

https://www.infineon.com
https://doi.org/10.1145/3503222.3507714
https://doi.org/10.1145/3168821
https://www.mathworks.com/solutions/embedded-code-generation.html
https://www.mathworks.com/solutions/embedded-code-generation.html
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
https://misra.org.uk/
https://misra.org.uk/

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

[16] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
SIGPLAN Not. 48, 6 (June 2013), 519-530. doi:10.1145/2499370.2462176

[17] Ramzy Rammouz, Lioua Labrak, Nacer Abouchi, J] Constantin, Y Zaatar, and

D Zaouk. 2015. A generic Simulink based model of a wireless sensor node:

Application to a medical healthcare system. In 2015 International Conference on

Advances in Biomedical Engineering (ICABME). IEEE, 154-157.

Alexander] Root, Maaz Bin Safeer Ahmad, Dillon Sharlet, Andrew Adams, Shoaib

Kamil, and Jonathan Ragan-Kelley. 2024. Fast Instruction Selection for Fast Digital

Signal Processing. In Proceedings of the 28th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume

4 (Vancouver, BC, Canada) (ASPLOS °23). Association for Computing Machinery,

New York, NY, USA, 125-137. doi:10.1145/3623278.3624768

Sergio Saponara. 2019. Hardware accelerator IP cores for real time Radar and

camera-based ADAS. Journal of Real-Time Image Processing 16, 5 (2019), 1493—

1510.

Gregor Schewior, Holger Flatt, Carsten Dolar, Christian Banz, and Holger Blume.

2011. A hardware accelerated configurable ASIP architecture for embedded real-

time video-based driver assistance applications. In 2011 International Conference

on Embedded Computer Systems: Architectures, Modeling and Simulation. IEEE,

209-216.

Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2022.

SLNET: a redistributable corpus of 3rd-party simulink models. In Proceedings

of the 19th International Conference on Mining Software Repositories (Pittsburgh,

Pennsylvania) (MSR ’22). Association for Computing Machinery, New York, NY,

USA, 237-241. doi:10.1145/3524842.3528001

Simulink and Matlab. 2025. Simulink Documentation. https://www.mathworks.

com/products/simulink.html.

[23] Zhuo Su, Dongyan Wang, Yixiao Yang, Yu Jiang, Wanli Chang, Liming Fang, Wen
Li, and Jiaguang Sun. 2021. Code synthesis for dataflow-based embedded software
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41, 1 (2021), 49-61.

[24] Zhuo Su, Dongyan Wang, Yixiao Yang, Zehong Yu, Wanli Chang, Wen Li, Aiguo
Cui, Yu Jiang, and Jiaguang Sun. 2021. MDD: A unified model-driven design
framework for embedded control software. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41, 10 (2021), 3252-3265.

[18

[19

[20

[21

[22

Zehong Yu, Zhuo Su, Rui Wang, and Yu Jiang

[25] Zhuo Su, Zehong Yu, Dongyan Wang, Wanli Chang, Bin Gu, and Yu Jiang. 2024.

Test Case Generation for Simulink Models using Model Fuzzing and State Solving.
In Proceedings of the 39th IEEE/ACM International Conference on Automated Soft-
ware Engineering (Sacramento, CA, USA) (ASE °24). Association for Computing
Machinery, New York, NY, USA, 117-128. doi:10.1145/3691620.3694991

Zhuo Su, Zehong Yu, Dongyan Wang, Yixiao Yang, Yu Jiang, Rui Wang, Wanli
Chang, and Jiaguang Sun. 2022. HCG: optimizing embedded code generation of
simulink with SIMD instruction synthesis. In Proceedings of the 59th ACM/IEEE
Design Automation Conference. 1033-1038.

Zhuo Su, Zehong Yu, Dongyan Wang, Yixiao Yang, Rui Wang, Wanli Chang,
Aiguo Cui, and Yu Jiang. 2023. STCG: State-Aware Test Case Generation for
Simulink Models. In 2023 60th ACM/IEEE Design Automation Conference (DAC).
1-6. doi:10.1109/DAC56929.2023.10247787

Samuel Thomas and James Bornholt. 2024. Automatic Generation of Vector-
izing Compilers for Customizable Digital Signal Processors. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1. 19-34.

Eugene Titov, Jason Lustbader, Daniel Leighton, and Tibor Kiss. 2016. Mat-
lab/Simulink framework for modeling complex coolant flow configurations of ad-
vanced automotive thermal management systems. Technical Report. National
Renewable Energy Lab.(NREL), Golden, CO (United States).

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2021. Vectorization for digital signal processors via equality saturation.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS °21).
Association for Computing Machinery, New York, NY, USA, 874-886. doi:10.
1145/3445814.3446707

Liuping Wang. 2020. PID control system design and automatic tuning using
MATLAB/Simulink. John Wiley & Sons.

Zehong Yu, Zhuo Su, Yu Jiang, Aiguo Cui, and Rui Wang. 2024. Efficient Code
Generation for Data-Intensive Simulink Models via Redundancy Elimination. In
Proceedings of the 61st ACM/IEEE Design Automation Conference (San Francisco,
CA, USA) (DAC ’24). Association for Computing Machinery, New York, NY, USA,
Article 20, 6 pages. doi:10.1145/3649329.3656217

Zehong Yu, Zhuo Su, Yixiao Yang, Jie Liang, Yu Jiang, Aiguo Cui, Wanli Chang,
and Rui Wang. 2022. Mercury: Instruction Pipeline Aware Code Generation
for Simulink Models. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 41, 11 (2022), 4504-4515.

https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/3623278.3624768
https://doi.org/10.1145/3524842.3528001
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://doi.org/10.1145/3691620.3694991
https://doi.org/10.1109/DAC56929.2023.10247787
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3649329.3656217

	Abstract
	1 Introduction
	2 Background
	2.1 Model-Driven Design and Simulink
	2.2 Code Generation

	3 Motivation
	4 Design
	4.1 Graph Refactoring
	4.2 Hardware-Oriented Synthesis

	5 Implementation
	6 Evaluation
	6.1 Comparison Experiments on -O2 Flag
	6.2 Comparison Experiments on -O3 Flag
	6.3 Comparison Experiments on Other Metrics
	6.4 Hypotheses Testing

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

