FAwKES: Finding Data Durability Bugs in DBMSs via
Recovered Data State Verification

Zhiyong Wu
KLISS, BNRist, School of Software
Tsinghua University, China
wzy19990306@gmail.com

Wengqian Deng
KLISS, BNRist, School of Software
Tsinghua University, China
dengwenking@gmail.com

Abstract

Data durability is a fundamental requirement in DBMSs,
ensuring that committed data remains intact despite unex-
pected faults such as power failures. Despite its critical im-
portance, implementations of durability and recovery mecha-
nisms continue to exhibit flaws, leading to severe issues(e.g.,
data loss, data inconsistency), which we refer to as Data
Durability Bugs (DDBs). However, there is a limited under-
standing of the characteristics and root causes of DDBs. Fur-
thermore, existing testing methods(e.g., Mallory) are often
inadequate for detecting DDBs, particularly those that cause
data loss or data inconsistency following DBMS failures.

This paper presents a comprehensive study of 43 DDBs
across four widely used DBMSs. It reveals that DDBs primar-
ily manifest as data loss, data inconsistency, log corruption,
and system unavailability, often stem from flawed durability
and recovery mechanisms, and are typically triggered when
faults occur during filesystem or kernel-level calls. Based on
these findings, we developed FAWKEs, a testing framework
to detect DDBs with recovered data state verification. It em-
ploys context-aware fault injection to target critical filesys-
tem and kernel-level regions, functionality-guided fault trig-
gering to explore untested paths, and checkpoint-based data
graph verification to detect post-crash inconsistencies. We
applied FAWKEs to eight popular DBMSs and discovered 48
previously unknown DDBs, of which 16 have been fixed and
8 have been assigned CVE identifiers due to the severity.

ACM Reference Format:

Zhiyong Wu, Jie Liang®, Jingzhou Fu, Wengian Deng, and Yu Jiang®.
2025. Fawkes: Finding Data Durability Bugs in DBMSs via Re-
covered Data State Verification. In ACM SIGOPS 31st Symposium

*Jie Liang and Yu Jiang are the corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1870-0/25/10
https://doi.org/10.1145/3731569.3764841

Jie Liang*
School of Software
Beihang University, China
liangjie.mailbox.cn@gmail.com

Jingzhou Fu
KLISS, BNRist, School of Software
Tsinghua University, China
fuboat@outlook.com

Yu Jiang*
KLISS, BNRist, School of Software
Tsinghua University, China
jiangyu198964@126.com

on Operating Systems Principles (SOSP °25), October 13—16, 2025,
Seoul, Republic of Korea. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3731569.3764841

1 Introduction

Database management systems (DBMSs) play a critical role
in modern software infrastructures, managing vast amounts
of crucial data across numerous applications and services. A
key aspect of DBMS reliability is ensuring data durability,
which guarantees that once data is committed, it remains
intact despite unexpected failures such as power outages,
crashes, or disk errors [2]. To achieve this, DBMSs implement
advanced durability and recovery mechanisms, including
Write-Ahead Logging (WAL) [14, 42], Checkpoints [27], and
Redo/Undo Logging [39], which help preserve data durability
and facilitate recovery following unexpected disruptions.
However, even robust durability and recovery mechanisms
implemented in DBMSs may occasionally fail to operate
as intended, leading to data inconsistencies, data loss, or
even complete system failures. These failures often stem
from the inherent complexity of such mechanisms, where
implementation errors may go unnoticed, resulting in un-
intended consequences. We refer to these issues as Data
Durability Bugs (DDBs), which are critical flaws that can
severely compromise data durability and DBMS reliability.
For example, Figure 1 illustrates a representative DDB in
TDengine [57]. In this example, an unexpected disk-space
exhaustion crashes the TDengine server while it is executing
ALTER statements to modify constraints on tables t1 and
t2(Step 3). However, due to the implementation errors in
TDengine’s WAL and checkpoints, table t1 loses part of its
data and t2 is wiped entirely after recovery(Step 4)—even
though the previous CREATE TABLE and INSERT operations
have successfully been committed(Steps 1, 2). TDengine is a
widely used DBMS with extensively tested data durability
and recovery mechanism. However, the bug still arises from
an implementation flaw in this mechanism, which leads to
data loss when the DBMS encounters disk-space exhaustion.
Although DDBs are critical for DBMSs, the understanding
of their characteristics remains limited. More importantly,

https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0001-5109-3700
https://orcid.org/0000-0001-5109-3700
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764841
https://doi.org/10.1145/3731569.3764841
https://doi.org/10.1145/3731569.3764841

Initialize table and commit with checkpoint 1Initialize Tables
CREATE TABLE t1 USING stl1 TAGS(s1,52) ;
CREATE TABLE t2 USING st2 TAGS(s3,54) ;
Generate data and commit with checkpoint 2 Insert Data .
@ @ INSERT INTO t1 USING st1 TAGS(..) N—"
INSERT INTO t2 USING st2 TAGS(.) —
Original DB
TDengine crash with disk 1/0O error(exhaustion) h
ALTER TABLE t1 TTL 10000; |3system Crash |
ALTER TABLE t2 RENAME COLUMN s3 CHAR(20); 4. Recovery
t2 does not exist and t1 lose some data V.
L

Data Durability Bug Recovered DB
Figure 1. A DDB in TDengine results in data loss following
a crash due to disk space exhaustion.

there is a lack of effective testing methods for detecting these
DDBs. Manual analysis can be used to test DDBs by simu-
lating faults in the DBMS and checking whether the data re-
mains intact after a system restart. Although insightful, this
process is inherently time-consuming and labor-intensive.
Conventional fault injection tools (e.g., Jespen [28] and Mal-
lory [40]) are typically used to assess the fault tolerance
and consistency of distributed systems by simulating net-
work partitions, node crashes, and delays. However, these
tools have limitations in detecting DDBs. Specifically, they
inject faults randomly, often missing durability issues tied
to specific execution states, such as those involving filesys-
tem or kernel-level calls. Moreover, they were designed for
verifying distributed node correctness and can not address
issues like data loss, data inconsistency, and log corruption
in single-node DBMSs after recovery. Therefore, an effective
testing approach to detecting DDBs in DBMSs is required.
To better understand and systematically address the na-
ture of DDBs, we collected and conducted an in-depth study
of 43 real-world DDB cases across four widely-used DBMSs:
PostgreSQL, MySQL, IoTDB, and TDengine. For each case,
we manually analyzed detailed bug reports, developer dis-
cussions, and associated code fixes to characterize their man-
ifestations, root causes, and triggering conditions. Our study
revealed three fundamental findings: @ Manifestations:
DDBs in DBMS often exhibit 4 primary manifestations fol-
lowing a crash and subsequent recovery, including data
loss(33%), data inconsistency(31%), log corruption(20%), and
system unavailability(16%); @ Root causes: Most (70%) data
durability bugs originate from flawed crash recovery or data
flushing logic. @ Triggering conditions: DDBs are trig-
gered by a four-step process: workload generation, check-
point execution, fault-induced crash, and revealing anom-
alies after recovery. We also found that 86% of these bugs are
triggered specifically when faults occur during filesystem or
kernel-level call operations associated with executing SQL
statements. These characteristics establish essential require-
ments for DDB detection: simulate complete crash-recovery

cycles via controlled fault injection at precise SQL execution
phases and verify DDBs based on post-crash manifestations.

However, translating these requirements into practical
detection tools faces three fundamental technical challenges:
(1) Precisely injecting faults at critical filesystem or kernel-
level call sites during SQL operations. Many durability bugs
surface only when crashes occur at specific execution points,
necessitating targeted fault injection. (2) Systematically ex-
ploring rarely executed, durability-critical paths in DBMS im-
plementations. Existing tools frequently trigger faults along
common or shallow paths, missing subtle bugs hidden deep
within less-used SQL features or complex internal states.
(3) Accurately verifying data integrity after DBMS recovery.
Determining whether the DBMS has correctly recovered re-
quires understanding the expected post-recovery state. Due
to the complexity of durability and recovery procedures,
calculating the post-recovery data state is challenging.

To address these challenges, we propose FAWKEs, a testing
framework designed to detect DDBs in DBMSs. First, FAWKES
applies context-aware fault injection to identify critical code
regions (referred to as fault injection sites), particularly tar-
geting filesystem and kernel-level calls. Second, FAWKES em-
ploys functionality-guided fault triggering, leveraging fault
injection site coverage and a fault-functionality table. By
prioritizing less-covered sites and generating targeted SQL
workloads, FAWKES systematically explores critical execution
paths, enhancing its ability to reveal subtle DDBs. Finally,
FAWKES integrates a checkpoint-based data graph verifica-
tion mechanism to rigorously validate recovery outcomes,
accurately detecting subtle data loss and data inconsistency
issues that other methods overlook.

We implemented FAWKESs and evaluated it on eight popular
DBMSs: PostgreSQL, MySQL, MariaDB, IoTDB, TDengine,
GridDB, CnosDB, and OpenGemini. FAWKEs detects 48 pre-
viously unknown DDBs, 16 of them have been fixed, and 8
DDBs have been assigned CVE due to their severity. More-
over, in comparison to other state-of-the-art fault injection
approaches, the 72-hour result shows that FAWKEs detects
27, 25, 23, and 28 more bugs, and covers 84%, 48%, 47%, and
70% more branches than Jespen [28], CrashFuzz [24], Mal-
lory [40], and CrashTuner [38], respectively. In summary,
our paper makes the following contributions:

1. We find that data durability bugs significantly ham-
pered the stability and reliability of DBMS, yet contem-
porary testing methodologies largely overlook these
critical bugs.

2. We analyze trigger conditions of DDBs and propose
Fawkes, which employs context-aware fault injection,
functionality-guided fault triggering, and checkpoint-
based data graph verification to detect DDBs.

3. FAWKES detects 48 previously-unknown DDBs in eight
popular DBMSs. Among them, 16 have been fixed and
8 are assigned with CVEs due to their severity.

2 Preliminaries of Data Durability

Data Durability. Modern DBMSs generally handle large vol-
umes of critical data frequently operate under complex and
dynamic environments, and must reliably store data despite
potential failures such as power outages, crashes, or disk
errors. Data durability guarantees that once SQL statements
or transactions are committed, their changes remain safely
stored and recoverable, even if the system experiences un-
expected failures such as power loss or process crashes [47].
Ensuring data durability is a core DBMS requirement.

Data Durability and Recovery Mechanism. To ensure
data durability, DBMSs commonly employ robust data dura-
bility and recovery mechanisms (e.g., Write-Ahead Logging
(WAL), Redo Logs, ARIES, and Checkpoints). The core idea
is to maintain comprehensive log files recording essential
SQL operations (e.g., whether committed, uncommitted, or
already flushed to disk), while updating persistent data struc-
tures [47, 12]. If a fault or crash occurs, DBMSs can roll back
incomplete operations and replay those that were committed
but not fully flushed, regardless of each write’s completion
status at the time of failure.

Figure 2 provides an example of data durability and re-
covery mechanism. When executing a committed sequence
of SQL statements that modify data, the DBMS updates two
core in-memory structures: Din-memory data, which holds
the data pages currently loaded in memory. The DBMS an-
alyzes which disk pages must be modified and updates the
corresponding in-memory pages to reflect the SQL opera-
tion’s results. @Buffer manager, which logs essential infor-
mation (e.g., statements, modified pages, commit status) to a
dedicated log file. Besides, it also records “dirty pages” repre-
senting data altered in memory but not yet flushed to disk. If
a crash occurs during the write process, the DBMS can rely
on the logged details to restore corrupted pages on restart.

Data Durability and Recovery Mechanism in DBMS |

Memory Disk
EACACAMED T —
& gt [II [@] [@[reeenasnsd | Page A(PageLSN: 4)

Page D(PageLSN: 3)

- Page A(LSN:4) Page C(LSN:3)
Database Engine !

1| @ Update Table ... | 1
1| @ Alter Table t, '
! |
Manager| | Timer ! | ® Delete Tablet, ... | |

Page B(PageLSN: 5)

Page C(PageLSN: 8)

Buffer Manager

2ui0dpay) Woxy Asanoray

{ || oo [y AR
@ i it i\ (|1 A feed [T
1 (@ Update Tablet, | | 2 C =28 _
: ‘ B o [Checkpoints |
ST Y e Hi) [5o \
[S —— v . Dirty Page
) (COCOC]) | [@terei] |Fa A [PrvPees
e o[D |
Log File Cheekpoin S =

Figure 2. Data durability and recovery mechanism in DBMS.

To enhance performance, data pages updated in mem-
ory are not immediately flushed to disk; instead, the DBMS
relies on periodic checkpoint operations. Each checkpoint
ensures that modified in-memory (including in-memory data

and buffer manager) is synchronized with persistent stor-
age—often by invoking fsync. Notably, any SQL operations
within a transaction that has not been fully committed are
excluded from this persistent state. After a crash, the DBMS
initiates recovery by reverting to the state saved at the most
recent checkpoint. It then consults the log records for all SQL
modifications performed since that checkpoint, reapplying
or discarding changes as needed to restore committed data.
This design ensures the data durability of DBMSs [1].
Definition of Data Durability Bugs in DBMSs. De-
spite the theoretical soundness of DBMS durability mecha-
nisms, their practical implementation frequently contains
errors due to their complexity. In this paper, we define Data
Durability Bugs (DDBs) as DBMS implementation errors
that prevent committed SQL statements from keeping data
intact and accessible during unexpected failures or runtime
conditions. For example, to guarantee correctness, the DBMS
should perform small atomic writes in sequence after each
checkpoint, thereby preserving write order and ensuring
durability—but at a significant cost to performance [65]. In
reality, DBMS commonly batch or aggregate multiple writes
before an explicit flush or employ larger payloads in a single
write to increase throughput, which amplifies the complex-
ity and increases the likelihood of failures. Errors in such
optimizations may lead to lost writes, out-of-order updates,
or partially persisted data, especially when a single SQL
modifies multiple pages or requires several write operations.

3 Motivation Study

To better understand the characteristics of DDBs in DBMS
and inform our detection approach, we investigate DDBs
across four widely used DBMSs in industry [36], namely
MySQL, PostgreSQL, IoTDB, and TDengine. We systemat-
ically search DDBs and related information from the issue
track systems and commit logs of each DBMS [44, 17, 49, 56].
Since DBMS developers rarely label issues explicitly as DDBs,
we use keywords such as “durability”, “recovery”, “reliabil-
ity”, “transaction”, and their variations to locate potential
cases. We then manually review the bug reports and devel-
oper discussions, discarding issues that are not relevant to
data durability. We identify a total of 43 data durability bugs,
summarized in Table 1.

Table 1. The numbers of studied DDBs in four DBMSs.

DBMS | PostgreSQL MySQL IoTDB TDengine | Total
DDBs | 6 11 15 n | 43

Threats to Validity. Similar to other studies, our research
has two main limitations that should be considered. (1) DDBs
Selection. Our study mainly focuses on DDBs arising from
fault-induced crashes. A small subset of bugs in which data
silently fails to persist due to optimizer logic errors or other

non-fault-based causes were excluded. Developers often label
these issues as “logic bugs” rather than “durability” problems.
(2) Scope of Studied DBMSs. We concentrated on four DBMSs
(PostgreSQL, MySQL, IoTDB, and TDengine). While these
systems are widely used, the breadth of DBMS technologies
is extensive, encompassing graphs, vector stores, and spe-
cialized architectures. Our findings may not fully generalize
to DBMSs with different architectures. However, examining
these four representative DBMSs allowed us to capture a
diverse set of fault-induced DDB patterns.

3.1 Symptoms of Data Durability Bugs

We begin by examining the consequences and manifestations
of each data durability bug (DDB), with the goal of designing
a reliable detection mechanism.

Finding 1: Observed Manifestations. Among the 43
studied bugs, DDBs in DBMSs exhibit 4 primary manifesta-
tions following a crash and subsequent recovery: data loss(33%),
data inconsistency(31%), log corruption(20%), and system un-
availability(16%).

While the manifestations of these DDBs might initially
appear subtle (e.g., slight data mismatches), our in-depth anal-
ysis shows that even minor irregularities frequently precede
major problems. Specifically, 33%(14/43) DDBs lead to data
loss, where crucial data entries are either improperly flushed
or dropped entirely. Another 31% (13/43) DDBs result in data
inconsistencies, such as incorrect values or corrupted fields.
Meanwhile, 20%(9/43) DDBs are related to log corruption,
hindering or completely blocking the crash recovery process.
Moreover, 16%(7/43) culminate in system unavailability, ren-
dering the DBMS offline or unable to recover. These findings
highlight the importance of rigorously monitoring opera-
tions (e.g., WAL writes, checkpoint procedures, log integrity)
to promptly identify and address data durability issues.

Finding 2: DDB Severity. Most(81%) DDBs result in criti-
cal data security issues and are labeled as Critical by developers,
9 DDBs have been assigned official CVEs due to severity.

Specifically, out of the 43 studied DDBs, 35 (81%) are ex-
plicitly labeled as Critical by developers, underscoring their
severe impact. Further analysis reveals that 11 of these bugs
have been assigned official CVE identifiers, indicating recog-
nized security implications. Notably, 6 bugs receive a CVSS
severity score greater than 7.5, highlighting their significant
threat levels. Additionally, our analysis shows that mani-
festations involving data loss, data inconsistency, and log
corruption lead to more severe consequences than other
symptoms, due to their widespread impact and challenging
data security. For example, when logs(e.g., write-ahead logs
or checkpoint logs) become corrupted, the DBMS will lose
its ability to accurately record or replay changes. This under-
scores the critical severity of DDBs, highlighting the need
for an automated approach to detect these bugs.

Finding 3: Root Causes. Most (72%) data durability bugs
originate from flawed crash recovery or data flushing logic.

By examining the patches and discussion threads for each
bug, we identified three main categories of root causes for
the data durability bugs. First, 72%(31/43) DDBs are caused
by oversights in crash recovery or data flushing logic. Exam-
ples include missing fsync calls before process termination,
improper ordering of writes that leave data in an inconsis-
tent state on disk, or faulty WAL replay routines that skip
essential data blocks. Second, 16%(7/43) DDBs result from
incorrect concurrency handling in critical code paths (e.g.,
race conditions during log flushing) that lead to lost or over-
written data. Finally, 12%(5/43) DDBs stem from errors in
checkpoint management: for instance, incomplete check-
point files or neglected metadata updates that incorrectly
signal successful persistence. These root causes highlight
the importance of robust synchronization primitives, atomic
write protocols, and meticulous recovery procedures to safe-
guard the data durability of DBMS.

3.2 Triggering of the Data Durability Bugs

We then analyzed the steps leading to each DDB to under-
stand how these failures are triggered, thereby informing
our design of an automated triggering strategy.

Finding 4: Trigger Steps. Data durability bugs can be
reliably triggered using a concise four-step sequence.

We further examined the steps required to consistently
reproduce each DDB. Our findings indicate that the repro-
ducible triggering pattern of DDBs can be summarized into
the following four steps: @ Initial Data Creation and Contin-
uous Data Modification. The process begins by creating an
initial dataset and then continually modifying the dataset via
DML or DDL operations (e.g., UPDATE, ALTER). 2 Checkpoint
Execution. During the execution of these SQL operations,
the checkpoints are executed by manual intervention or
automated system processes, which flush a portion of the
modified data to disk, marking a recovery baseline. @ Fault-
Induced Crash. For SQL statements executed after the last
checkpoint (i.e., those still in progress or uncommitted), a
fault is deliberately triggered(e.g., power failure) to cause a
system crash. @ System Recovery and Replay. Upon restart-
ing, the DBMS automatically performs a recovery process
by restoring from the latest checkpoint and replaying subse-
quent SQL logs. At this stage, anomalies such as data loss,
data errors, or log corruption become apparent.

Finding 5: Fault Categories. Among the 43 bugs stud-
ied, we identified 7 distinct fault categories that led to system
crashes that happened during the third triggering step.

During the third triggering step, we identified seven dis-
tinct fault types causing system crashes during in-flight SQL
operations. Specifically, 26% (11/43) DDBs result from power
failures during SQL execution; 19% (8/43) DDBs from mem-
ory exhaustion, which forces the system to crash due to de-
pleted resources; 16% (7/43) DDBs from internal shutdown
commands triggered by specific SQL statements(e.g., reboot
statement) from other clients; 10%(4/43) DDBs from abrupt

DBMS process killed by others; another 10% (4/43) DDBs from
kernel crashes; 12%(6/43) DDBs from severe disk I/O failures
that impede data flushing and checkpoint operations; and
7%(3/43) DDBs from unhandled software exceptions, leading
to unpredictable system behavior. These faults represent
realistic scenarios that underline the importance of robust
durability and recovery mechanisms in DBMS.

Finding 6: DBMS Behaviors During Fault. When faults
occur during the third trigger step, the SQL statements of 86%
DDBs are actively performing filesystem calls or other kernel-
level system calls in the DBMS.

As shown in Figure 3, during the reproduction of studied
DDBs, we found that 86% (37/43) of DDBs were reliably trig-
gered only when SQL statements interacted with filesystem
operations or kernel system calls.

File System Call

‘ 9% ‘ 52% ‘ 39% ‘

Internal Code Other Kernel System Call

Figure 3. DBMS behaviors statistics during faults happening.

For instance, Figure 4 illustrates a DDB in MySQL. This
bug requires a UPDATE statement modifying table c@ in batch
mode while the DBMS process is terminated by signal kill. If
the UPDATE statement is interrupted during parsing or other
preliminary stages, the bug can not be reproduced. The root
cause of this issue lies in MySQL’s improper handling of
filesystem call failures. In contrast, only 14% of the DDBs
studied could be triggered at any phase of SQL execution. For
example, the DDB in TDengine (Figure 1) arises from imple-
mentation errors in TDengine’s WAL log checkpoint logic
rather than its handling of filesystem interactions, which can
be triggered at any execution stage under disk I/O failure
conditions. This finding shows the importance of filesystem
or kernel-level calls for triggering DDBs with faults.

CREATE TABLE t0 (c1 INT);

CREATE TABLE t1 (c2, DOUBLE, c3 INT, FOREIG KEY (c3) REEFERENCES

t0(c1) ON UPDATE CASCADE);

INSERT INTO t0 (c1) values (+);

INSERT INTO t1 (c2, c3) values (-); -- DBMS Checkpoint;

UPDATE TABLE t0 SET c1=83782294 WHERR c1=0 (c2); Process Killed (while fsync)
-- MySQL Recovery

ERROR LOG in Recovery Process

Figure 4. A log corruption problem in MySQL with abrupt
process termination fault.

Finding 7: Involved SQL Grammar. Data durability bugs
affect diverse SQL grammar features, spanning 37 distinct data
processing functionalities among the 43 studied bugs.

Our analysis reveals that DDBs are not limited to a sin-
gle type of SQL operation but span a diverse set of SQL
grammar features. In the 43 studied DDB cases, we observed

37 different SQL grammar rules and built-in functions re-
lated to data processing that played a role in triggering
data durability. These features include fundamental oper-
ations such as INSERT, UPDATE, and DELETE, as well as more
complex analytical functions like time-based aggregations
(AVG, MAX, INTERPOLATE), downsampling functions (GROUP
BY, TIME), and schema-altering commands (ALTER TABLE,
CREATE TIMESERIES). These findings suggest that detecting
DDBs requires comprehensive testing across various SQL
features or functionalities in the DBMS.

3.3 Limitations of Existing Approaches

Ensuring data durability is critical for DBMS, and various ap-
proaches have been employed to detect Data Durability Bugs
(DDBs, which can be categorized into two types. However,
both types have limitations in effectively capturing DDBs.

(1)Manually crafted testing is the most common approach to
test DDBs, relying on testing engineers to design specific scenar-
ios that simulate durability failures. [45, 18] While effective
in capturing common cases, this approach is labor-intensive
and unscalable. Moreover, manually scripted scenarios rarely
explore hidden DDBs, which are triggered during filesystem
interactions. For example, the DDB in Figure 3 requires the
fault occurring when the SQL statement is executed for mod-
ifying the data in the table(filesystem interactions). Further-
more, its limited coverage of SQL grammar leaves critical
durability bugs undetected.

(2) To enhance performance, developers import automated
fault injection testing tools that introduce randomized faults(e.g.,
process termination), to assess DBMS resilience and data dura-
bility. While these methods can detect issues like system
unavailability, their inherent randomness provides insuffi-
cient coverage to detect DDBs. Specifically, state-of-the-art
fault injection tools (e.g., Jespen [28], CrashFuzz [28]) are
designed for distributed systems and lack precise fault injec-
tion along critical durability paths in single-node DBMSs. In
particular, they rarely induce faults precisely at filesystem or
kernel-level call sites, which are critical to triggering subtle
DDBs. In addition, their random fault-triggering methods
may inadequately exercise DBMS-specific durability-critical
execution path, saving many potential DDB scenarios un-
explored. Moreover, their correctness checks are typically
coarse-grained (e.g., confirming system availability or dis-
tributed consistency), making them unsuited for identifying
data loss or inconsistencies, which require comparing data
states before and after a crash. Since SQL statements are only
persisted after checkpoints, predicting the post-crash state
is challenging.

Idea of FAWKES. Based on previous findings, we designed
FAWKES to detect DDBs with recovered data state verification.
The main idea is to precisely inject faults and trigger them
guided by DBMS functionality during SQL execution, then
detect DDBs by comparing the expected post-recovery data state
with the observed recovered data state. Specifically, it applies

context-aware fault injection to identify critical code regions
(referred to as fault injection sites), particularly targeting
filesystem and kernel-level calls. To effectively explore the
state space, FAWKES monitors the execution coverage of fault-
injection sites and the related SQL functionality to guide the
triggering of faults. When faults trigger a crash and recovery
begins, FAWKES calculates the expected post-recovery state
based on the checkpoints and recovery logs, then compares
it with the observed recovered data state to detect DDBs.

4 Design of FAWKES

Figure 5 illustrates the workflow of FAwKEs for detecting
DDBs, consisting of two main phases. The first phase is
the fault instrumentation process. Given a DBMS as the
test target, FAWKES’s Context-Aware Fault Injector scans
the source code for critical regions(i.e., fault-injection sites)
around filesystem or kernel-level calls. Using a library-based
injection approach, it hooks fundamental OS libraries (e.g.,
the standard C library, filesystem library) to insert faults into
these instrumented windows seamlessly. The second phase
is the testing process, comprising several steps. In Step @,
FAwKES generates amounts of data and queries to simulate a
realistic DBMS environment. In Step @), FAWKES collects the
coverage of triggered fault-injection sites, and the Semantic-
Guided Fault Trigger decides which fault-injection site is
selected to trigger during the execution of SQL queries in
Step @. In Step @, once the DBMS crashes, FAWKES automat-
ically reboots and initiates its recovery process. Meanwhile,
the Data State Verifier compares the DBMS’s recovered
data against the expected committed state. If discrepancies
are detected (e.g., data loss, corruption), FAWKES reports a
DDB in the target DBMS.

Fault Instrumentation | [DBMS Testing Process |

Tested DBMS

Source | | Grammar
Code Files
v

Context-Aware
Fault Injector

Workload Generator Data State Verifer

= Data Graph
1. Data Constructor

ll Data and Queries
4.Data Graph
Instrumented DBMS R D
4 Recovery| ecovery Data

Fault Injection Sites Data Checker

I 2.Faults Coverage HS Trigger Faults 5Report Bugs
Fault Location| | Fault Funct- || | | Functionality-Guided * Data Durability
Bitmap ionality Table Fault Trigger Bugs
)
T

Figure 5. Workflow of FAwkEs. It includes three major
components: (1) Context-Aware Fault Injector to determine
where to inject faults. (2) Functionality-Guided Fault Trigger
for deciding when to activate faults. (3) Data State Verifier
to check the recovery data state and detect DDBs.

4.1 Context-Aware Fault Injection

Fawxkes first scans source code to pinpoint critical code seg-
ments(i.e.,fault injection sites), where disruptions are most
likely to compromise data durability. Each fault injection site

corresponds to a specific code segment in which faults can
be deliberately triggered during execution. Inspired by Find-
ing 6 that 86% of DDBs occur specifically when SQL data-
modification statements invoke filestem calls or other kernel-
level system calls, FAWKES explicitly targets and marks these
filesystem and kernel interaction code segments as fault in-
jection sites. Concretely, FAWKES performs contextual analy-
sis during compilation to establish a call-dependency graph
among DBMS functions. Whenever the analysis reveals a
chain of calls culminating in OS foundational libraries (e.g.,
the standard C library), the relevant code or function is la-
beled as a fault injection site.

Subfigure(D and @ in Figure 6 illustrate how FAWKES uses
context analysis to identify fault injection sites in TDengine.
For example, the process_json_valueinvalueJson.c even-
tually calls add_value_to_json and put_json, which, via
jsonconfig.c, invoke the standard C <unistd> library’s
write function to access the filesystem. Based on this anal-
ysis, FAWKEs concludes that process_json_value and its
call code regions in valueJson.c are fault injection sites,
as they perform filesystem operations. Once the SQL state-
ments execute these instrumented sites, FAWKES induces
controlled crashes to trigger recovery procedures, thereby
exposing potential DDBs. For example, when executing res
= process_json_value(schema,. . .), FAWKES injects a
fault at that code path, forcing the DBMS to crash mid-
execution. The details of fault injection implementation and
fault types can be found in Section 5.

Fault Location Bitmap. After identifying fault injection
sites in the DBMS source code, FAWKES maintains a Fault
Location Bitmap that precisely records each site’s position.
Specifically, for every source file, the bitmap logs all fault
injection sites associated with filesystem or kernel-level calls,
enabling comprehensive tracking of fault injection site cov-
erage during testing. Subfigure® of Figure 6 illustrates an ex-
ample of the fault location bitmap. Once FAWKES determines
that res=process_json_value(schema,. . .) constitutes
a fault injection site, it assigns a unique identifier to corre-
late with that code segment. This identifier is then added
to the valueJson list within the Fault Location Bitmap, and
correlated with the associated source-code region of fault
injection sites to enable precise fault injections.

4.2 Functionality-Guided Fault Triggering

After identifying fault injection sites in the DBMS source
code, FAWKES then decides which one to activate during each
test run. Formally, let F = {fi, f>... fi} represent all identi-
fied fault injection; in principle, there are 2! possible combi-
nations, making exhaustive exploration impractical. Existing
fault injection tools rely on various heuristics to explore
fault injection site combinations, including random, brute-
force, coverage-guided, and deep-priority. However, random
selection often misses rarely-used code paths; brute-force

@ DBMS Source Code

tdbPager.c
ret = tdbOsRead(+)------""""""""

ssize_t read()//<unistd.h>

@Context Analysis

valueJson.c i
process_json_value(:)
L

add_value_to_jsoin() //valuelson.c

‘W valuelson.c
‘ares = process_json_value(schema,);

put_json(-) //valueJson.c
ssize_twrite(-F77~<anistai= "~ |
json_write(-+) //jsonConfig.c
sszie_t Writie(---) // <unistd.h> Siﬁgﬁﬁfe(m) (-]
Y void *ptr = malloc(-)y ##<s1d/ib.h>
’ l FileSystem l l Kernel l ‘ b

{rdopager{-+ T [| | | | tdbPager [ALTER, INSERT, - - |
valueDate || \\ [[H-+|valuesson | creATEDson Type], |
_vaLueronf’i‘T';'—’—’—“ % valueDate \ CREATE[Date Type], \
submitRes T o submitRes| Transaction, CREATE, -~ |

@ Fault Location Bitmap @ Fault-Functionality Table

J
I

costModel‘ General Grammar ‘

costModel |

Figure 6. An example of context-aware fault injection and corresponding fault-functionality table in TDengine.

strategy quickly becomes intractable for large I; coverage-
guided approaches focus on general code coverage rather
than fault injection site-related execution paths; and deep-
priority heuristics only enhance fault injection site coverage
on the single execution path, neglecting comprehensive fault
injection site coverage. None of these methods efficiently
captures fault injection sites tied to rarely-invoked SQL func-
tionality—critical to exposing hidden DDBs.

To address these limitations, we propose a Functionality-
Guided Fault Triggering strategy that leverages fault injection
site coverage alongside SQL functionality. Instead of randomly
exploring combinations, FAWKES builds on Finding 7, which
correlates fault injection site coverage with specific SQL op-
erations (e.g., INSERT, UPDATE). FAWKES maintains a Fault-
Functionality Table to record the relationship between source
files (described in fault location bitmap) and their associated
SQL functionalities. Subfigure @ in Figure 6 presents an ex-
ample of the table. For each source file in the fault location
bitmap, the table logs relevant SQL functionality based on
the document. For example, valueJson. c, which handles
JSON-related data types, is linked to the SQL grammar in-
volved in creating and manipulating JSON fields (e.g., in
CREATE TABLE or in DML operations concerning JSON data).
During testing, FAWKES monitors coverage of fault injection
sites through the fault location bitmap. If the fault injection
site in a file has been insufficiently triggered, FAWKES then
consults fault-functionality table to identify the relevant SQL
functionalities and then steers subsequent query generation
toward them, ensuring that test workloads continuously ex-
pand into less-covered fault injection site paths.

Algorithm 1 describes the process of functionality-guided
fault triggering. FAWKES maintains a FilePool, which con-
tains files with the highest number of uncovered fault injec-
tion sites, representing the most interesting targets for fault
injection(Line 1). Given a SQL workload, FAWKEs first traces
the fault injection sites triggered during execution (Lines 2-3)
and maps them to the corresponding source code files using
the fault location bitmap(FLB). To prioritize insufficiently
tested fault injection sites, it evaluates their coverage status
(Lines 4-6). If an uncovered site belongs to a file in FilePool,
it is selected for fault injection and the file’s coverage is

Algorithm 1: Functionality-Guided Fault Trigger.

:D: DBMS under Test

W: SQL Workloads for DBMS

FLB: Fault Location Bitmap

FFT: Fault Functionality Table

Output :Dj: Detected Data Durability Bugs

FilePool < InterestFaultBlockFile(FLB, D);

2 while true do

TraceFaults « TraceFaultBlocksofSQL(W);

foreach fault block f; € TraceFaults do

F « f;.BlockFile();

if F € FilePool and FaultCov(f;, FLB) = 0 then
updateFaultCovs(f;, FLB);
updatelLowCoverFiles(FilePool, FLB);
Grams < getSQLFeatures(FilePool, FFT);
InjectFaultandMonitorDBMSRcovery(D, fi, Dp)

end

Input

1

10

11
end
W « generateTestCases(Grams);

12

13

12 end

updated accordingly (Lines 7-9). In addition, leveraging the
fault-functionality table (FFT), FAwkEs then identifies SQL
functionality and grammar associated with these sites and
adjusts workload generation to emphasize them in subse-
quent tests (Lines 9 and 13). Faults are then injected, and
DBMS recovery is monitored for potential DDBs. If a DDB
is detected, FAWKES updates fault coverage, ensuring future
tests target unexplored execution paths (Lines 10-12). By
continuously refining its fault selection based on runtime
feedback, FAwKEs improves fault injection site coverage, ef-
ficiently uncovering DDBs in DBMS implementations.

4.3 Checkpoint-Based Data Graph Verification

According to Finding 1, DDBs typically manifest in four
ways: data loss, data inconsistency, log corruption, and sys-
tem unavailability. System availability and log corruption can
be directly detected by determining whether an exception
was reported during the DBMS restart and recovery pro-
cess, and whether there were error messages in the log files.

In contrast, data loss and data inconsistency are more sub-
tle, which requires comparing data states before and after a
crash. Since SQL statements are flushed to persistent storage
only after checkpoints(may occur manually or automatically
over time), predicting exactly which data should be present
post-crash is challenging. Moreover, DBMS may store vast
amounts of data (e.g., tens of thousands), making exhaustive
data comparisons time-consuming.

To tackle these challenges, FAWKES’s Date State Verifier in-
troduces Checkpoint-Based Data Graph Verification to detect
data loss and data inconsistencies, in addition to identify-
ing system unavailability and log corruption. Specifically,
FAWKES constructs a data graph that captures the DBMS
metadata state before a crash, rather than storing the entire
dataset. After injecting faults that induce a crash and forcing
the DBMS to undergo recovery, FAWKEs first checks the re-
covery logs or error messages to detect system unavailability
and log corruption. It then analyzes the recovered DBMS logs
to locate the latest checkpoint and updates the initial data
graph based on this checkpoint information. Finally, FAWKES
compares the recovered data against the constraints in the
updated data graph to detect any data loss or inconsistencies.

Data Graph Construction. During generating SQL state-
ments for execution, FAWKES constructs a data graph that
represents the metadata state of the DBMS before a crash. In-
stead of storing the entire dataset, which is voluminous, the
data graph consists of the metadata information, including
the tables, columns, row counts, and other data constraints.

SQL Statements

(1) CREATE TABLE t0(s0 int);

(2) CREATE TABLE t1(sl int, s2 char);

(3) INSERT INTO t1 (s1, s2) values(l, "devicel");

(4) INSER TABLE t0 values (1);
(5) ALTER TABLE t1 ADD INDEX i1 on s2;
(6) ALTER TABLE t2 ADD CONSTRANT keyl FOREIGN KEY REFERENCE
t0(s0) ON DELETE CASCADE;
Data Graph @ Graph Node| Value
t0 TABLE
s0 INT
sl INT
s2 CHAR
tl TABLE
p il,rct
i1 INDEX(s1)
rc1 row counts
cl FOREIGN KEY
rco row counts

Figure 7. An example of data graph construction in MySQL.

Figure 7 illustrates an example of the data graph construc-
tion process in MySQL, including the 6 SQL statements for
execution. In this test case, FAWKES first creates two tables
(t@ with column s@ and t1 with columns (s1, s2)). Corre-
spondingly, the data graph constructed by FAWKES initial-
izes two table nodes (t@ (TABLE), t2(TABLE)), and adds
three columns nodes (s@ (INT), s1(INT), s2(CHAR)). Subse-
quently, one row is inserted into each table(t®, t1), and the
SQL statements add an index constraint on column s2 as

well as a foreign key constraint between columns s@ and s1
of two tables. In the data graph, FAWKES updates the row
counts(rcy, rcy) that reflect the number of data entries, and
FAWKES construct two constraint nodes i1 (index constraint)
and c1(foreign key constraint) in the data graph.

Checkpoint-Based Data Graph Rectification. Dur-
ing testing, as FAWKES continuously generates and sends
SQL statements or transactions with functionality-guided
fault triggering, it updates the data graph to reflect the cur-
rent metadata state. However, at crash time, not all SQL
statements(or transactions) are successfully committed and
flushed to disk. The SQL statements(or uncommitted trans-
actions) after the latest checkpoint are rolled back by DBMS
during the recovery process. Only the statements before
the checkpoint can be preserved. Some statements after
the checkpoint will be re-executed for recovery. Therefore,
FAwWKES needs to rectify the data graph constructed before
the crash to align with the final recovered status.

! (D) Executed SQLs with Fault Original Data Graph |

i (1) CREATE TABLE t0(sO int);)

! (2) CREATE TABLE ti(s1 int, s2 char); (1)
i T0.S0>Start Transaction;

! T0.51>(3) INSERT INTO t1 values(l, “a");

1 -- System Checkpoint |:>

1 (4) INSER TABLE t0 values (1);

i T0.S3>(5)ALTER TABLE t1 ADD INDEX i1 on s2 (2)
i (6) ALTER TABLE t2 ADD CONSTRANT keyl

! FOREIGN KEY (s1) REFERENCE t0(s0) ON
! DELETE CASCADE; - - DBMS Crash

Ic:
{(2)Rollback Graph with Checkpoint RollBacked Data Graph i ‘
! (1) CREATE TABLE t0(s0 int);
! (2) CREATE TABLE ti(s1 int, s2 char);
! T0.S0> Start Transaction;
3 T0.S1> (3) INSERT INTO t1 values (1,
| va)
i -- System Checkpoint
3 -- Remove the SQL. statements in the
! graph after checkpoint.
3 -- Note that (3) is in a transaction, which
1 has not been committed

3@ Rectify Graph with Logged SQLs Rectified Data Graph l i
3 (4) INSER TABLE tO values (1); 1) (6) !
! T0.53>(5)ALTER TABLE t1 ADD INDEX il on s2 (1) 4
1 -- Transaction TO is not end with commit,

3 roll back statements (3) and (5) in the (4

! transaction TO

1 (6) ALTER TABLE t2 ADD CONSTRANT keyl
! FOREIGN KEY (s1) REFERENCE t0(s0) ON

i DELETE CASCADE

3 -- Re-execute statements (4) and

! Statement (6) to update the graph

,,,

Figure 8. Example of checkpoint-based graph rectification.

Figure 8 illustrates how the data graph is rectified using
the same 6 SQL statements in Figure 7. Note that statements
(3) and (4) are grouped into transaction T9, which remains
uncommitted (i.e., no commit statements). After statement
(3) executes, the DBMS performs a checkpoint. Later, when
statement (6) is executed, FAWKEs injects a fault that crashes
the DBMS (subfigure(D). After the DBMS recovery, FAWKES
first analyzes the recovery logs to locate the latest check-
point, which represents a consistent state where all preced-
ing committed SQL statements and transactions are durably

stored. Therefore, FAWKEs first rolls back the data graph to
the state before the checkpoint (retaining statements (1), (2),
and (3)) as shown in subfigure®. Then, it rectifies the data
graph with the SQL statements recorded for re-execution in
logs, as shown in subfigure®. Note that if a transaction (con-
sisting of multiple SQL statements) was not committed prior
to the latest checkpoint, all statements within that transac-
tion also require rollback. For instance, transaction T@ is not
committed, thus statements (3) and (5) need to be rolled back.
The statements (4) and (6), logged to be re-executed, are used
to update the graph. This process ensures the data graph
accurately reflects the DBMS’s expected state after recovery.

Recovered Data State Verification. To detect DDBs,
Fawxkes first checks for system unavailability by confirming
whether the DBMS reports exceptions during recovery, and
log corruption by examining error messages in log files. It
then verifies the recovered state by comparing the meta-
data in its data graph with the observed DBMS’s metadata,
targeting issues of data loss and data inconsistency.

Data loss typically manifests as missing tables, rows, or
constraints, which ultimately affect the DBMS’s metadata.
Therefore, by comparing the metadata information in the
data graph with the recovered metadata, FAWKEs can identify
data loss. For example, if a table, present in the graph, is
absent post-recovery, it is flagged as a potential data loss.

Data inconsistencies take two forms: metadata inconsisten-
cies and entity data inconsistencies(e.g., incorrect row values
in tables). For the metadata inconsistencies, FAWKES detects
them if the recovered metadata does not match the meta-
data of the data graph (e,g., the data type of a column differs
from what was recorded). For the entity data inconsistencies,
Fawkes tracks all DML statements committed after the last
checkpoint and verifies that each corresponding row exists
in the recovered database. For entity data inconsistencies,
Fawkes logs all DML statements committed after the last
checkpoint and verifies whether the modified data remains
correct. For instance, during MySQL recovery in Figure 8,
statement (4) (a DML statement on table t9) is re-executed,
Fawkes first checks for data loss and metadata inconsistencies
in table t0 (e.g., by comparing row counts). It then confirms
whether the newly inserted record(i.e., ("1")), is indeed
present in t0, thereby detecting entity data inconsistencies.
This verification process ensures that any deviations caused
by the recovery mechanism are detected, providing a reliable
means to validate the integrity of the post-recovery DBMS.

5 Implementation

We implemented FAWKES based on our proposed approach.
The overall codebase consists of roughly 10k lines of C++
codes, 5k lines of Rust codes, 4k lines of Bison/Flex codes,
encompassing the workload generator, context-aware fault
injector, functionality-guided fault trigger, and data state
verifier. For the fault injector component, we modified Glibc

and JVM libraries to implement our custom dynamic libraries,
involving about 3k lines of C codes and 4k lines of Java codes.
Below, we explain some other implementation details, which
we consider significant for the outcome.

Workload Generator. FAWKES’s workload generator en-
compasses both data and query generation to reflect real-
world DBMS usage. For data generation, FAWKEs first creates
diverse tables, each with 10-100 randomly chosen columns;
next, it randomly applies indexes (e.g., BTREE) and foreign
keys, ensuring consistent references by matching column
types; finally, FAWKES periodically populates these tables
while respecting defined constraints. The query generation
is built based on SQLsmith, which is a classic SQL genera-
tor. Since SQLsmith only supports the dialect of PostgreSQL,
we adapt other DBMSs’ dialects with their official grammar
files [8, 7, 6, 5]based on Flex and Bison.

Library-based Injection. After identifying fault injection
sites, FAWKES then injects faults when these critical codes
are being executed, to trigger DBMS crashes and initiate the
recovery procedures. To enhance generality, FAWKEs lever-
ages a library-based injection strategy, hooking fundamental
OS libraries (e.g., standard C library, filesystem library, JVM,
system call interfaces) used by the DBMS. These libraries
encompass the filesystem and kernel-level calls invoked by
fault injection sites. Specifically, FAWKES intercepts these
filesystem and kernel-level calls functions(e.g.,open, read,
and write), embedding custom fault logic to crash the DBMS
on demand. Figure 9 illustrates an example of this process in
TDengine. FAWKES hook the malloc filesystem call function
in the standard C libraries(e.g., glibc) with custom malloc
function implementation in a custom library. Once invoked,
the custom function logs the associated fault injection site
and then selects one of the 7 fault categories(detailed in Find-
ing 5) to induce a controlled crash. Different from traditional
source code injection, which manually modifies the source
code in the tested target, this approach is a one-time effort
because the fundamental libraries for each programming
language are common.

Custom Dynamic Library

Malloc Injection

void initialize_malloc_hook();

// hook original malloc

void* malloc(size_t size){

// locate call fault injection site
// decide whether to trigger fault
// original malloc logic }

Part code in TDengine
void submitValue() {

void *ptr = malloc(buf.len);
snprintf(buf.base, buf.len, "%ld",
time(NULL));

struct raft *r = getRaft(&raftEnv, 10);

}

Figure 9. An example of library-based injection in TDengine.

Bug Reproduction. To systematically reproduce discov-
ered DDBs, FAWKES logs the complete sequence of workloads,
fault injections, and DBMS states during each test. Once a
DDB is detected, FAWKES collects the nearest checkpoint’s

entire workload (including both data and queries), fault injec-
tion sites, fault types, and observed behaviors. To reproduce
the bug, FAWKEs replays the captured workloads and corre-
sponding fault injections exactly as they occurred between
the starting and triggering states, applying the same faults at
the same times. Any transient or probabilistic conditions are
replaced with deterministic triggers, reducing the likelihood
of false positives. By preserving the precise timing and se-
quence of operations, this method improve bug reproduction
and facilitates root-cause analysis of the DDBs.

6 Evaluation

To evaluate the effectiveness of FAWKES, we conduct experi-
ments to address the following research questions:

e RQ1: Can finding DDBs in real-world DBMSs?

e RQ2: How does FAWKEs performance compared with
state-of-the-art techniques?

e RQ3: How effective of each component in FAWKES?

e RQ4: How many bugs collected in the study can be
rediscovered by FAWKES?

6.1 Evaluation Setup

Tested DBMS. To evaluate FAWKES’s generality, we select
8 widely-used DBMS as the targets, including MySQL [4],
MariaDB [3], PostgreSQL [9], IoTDB [48], OpenGemini [16],
CnosDB [15], TDengine [57], and GridDB [19]. MySQL [4],
MariaDB [3], PostgreSQL [9] are the most popular open-
source databases that consistently rank near the topi.e, rank-
ing 2, 4, and 13, respectively of the DB-Engines popularity
ranking [36]. They always serve as standard subjects in prior
DBMS testing work. Moreover, to further evaluate the gener-
alability of FAWKEs, we also tested commercial DBMSs such
as TDengine, IoTDB, and OpenGemini, developed by Taos
Data, the Apache Foundation, and Huawei, respectively.

For performance comparisons, we also adapt state-of-the-
art fault injection tools CrashFuzz [24], Jespen [28], Mal-
lory [40], and CrashTuner [38] to those DBMS. Although
these tools are not specifically designed for detecting DDBs,
they represent the current best practices in DBMS reliabil-
ity testing and serve as strong baselines for performance
comparison in our experiments.

Basic Setup. We deployed both the DBMS and FAWKES
within the same local network to ensure direct communi-
cation and minimize network latency. All tested DBMS and
FAWKEs are run in docker containers with the source code
downloaded directly from their website. For quantitative
comparisons, we run the docker containers for each DBMS
experiment (including DBMS server and FAwkEs) with 10
CPU cores and 32 GiB of main memory.

6.2 Data Durability Bug Detection

Overall Result. We applied FAWKES to 8 target DBMSs to
detect data durability bugs for two weeks. Table 2 shows the

10

statistics of the bugs detected in the two-week continuous
testing. FAWKES totally identified 48 unique previously un-
known data durability bugs. Among them, 16 have been fixed
at the time of writing this paper, and 8 have been assigned
with CVE identifiers due to their severity, which enhances
the data durability and reliability of DBMSs.

Table 2. DDBs detected by the FAWKES within two weeks.

#| DBMS Bug Type Fault Category Bug Status
1|MySQL Data Loss Memory Exhaustion Confirmed
2|MySQL Data Loss Disk I/O Error Fixed
3|MySQL System Unavailability Disk I/O Error Confirmed
4|MySQL Data Inconsistency ~ Power Error Fixed
5|MariaDB Data Loss Memory Exhaustion Confirmed
6 |MariaDB Data Inconsistency =~ Memory Exhaustion Fixed
7 |MariaDB Data Inconsistency ~ Power Failure Fixed
8| MariaDB Data Loss Power Failure Confirmed
9|MariaDB Log Corruption Process Killed Confirmed
10 | MariaDB System Unavailability Internal Showdown Confirmed
11 |PostgreSQL |Data Loss Power Failure Confirmed
12| PostgreSQL |Data Inconsistency ~ Memory Exhaustion Confirmed
13|10TDB Data Loss Memory Exhaustion Confirmed
14|I0TDB Data Loss Power Failure Confirmed
15|10TDB Data Loss Internal Showdown Confirmed
16 |IcTDB Data Loss Process Killed Fixed
17|10TDB Data Loss Kernel Crash Fixed
18 |IoTDB Log Corruption Disk I/0O Failure Confirmed
19|I0TDB Log Corruption Power Failure Fixed
20 |IocTDB Log Corruption Software Exception Fixed
21|I0TDB Data Inconsistency Software Exception Confirmed
22|10TDB Data Inconsistency ~ Kernel Crash Confirmed
23|10TDB System Unavailability Kernel Crash Fixed
24|10TDB System Unavailability Memory Exhaustion Confirmed
25|TDengine |Data Loss Memory Exhaustion Confirmed
26| TDengine |Data Loss Power Failure Fixed
27|TDengine |Data Inconsistency Disk I/O Error Confirmed
28| TDengine |Data Inconsistency Internal Showdown Fixed
29|TDengine |System Unavailability Software Exception Fixed
30| GridDB Data Loss Memory Exhaustion Confirmed
31|GridDB Data Loss Power Failure Confirmed
32|GridDB Log Corruption Kernel Crash Fixed
33| GridDB Log Corruption Disk I/O Error Fixed
34|CnosDB Data Loss Kernel Crash Confirmed
35|CnosDB Data Loss Memory Exhaustion Confirmed
36| CnosDB Data Inconsistency ~ Memory Exhaustion Confirmed
37|CnosDB Data Inconsistency ~ Power Failure Fixed
38| CnosDB Data Loss Power Failure Confirmed
39|CnosDB System Unavailability Disk Full Confirmed
40| CnosDB System Unavailability Kernel Crash Confirmed
41| OpenGemini | Data Loss Power Failure Confirmed
42| OpenGemini | Data Loss Kernel Crash Confirmed
43| OpenGemini|Data Inconsistency ~ Power Failure Confirmed
44| OpenGemini | Data Inconsistency ~ Memory Exhaustion Fixed
45| OpenGemini | Data Inconsistency ~ Internal Showdown Confirmed
46 | OpenGemini | Data Loss Process Killed Confirmed
47| OpenGemini | Log Corruption Disk I/O Failure Confirmed
48| OpenGemini | System unavailability Software Exception Confirmed

Bug Severity. Based on the analysis conducted by DBMS
developers, the DDBs identified by FAWKEs are linked to
39 SQL grammar rules. While these bugs are challenging
to detect, they can lead to critical problems for data dura-
bility. Specifically, among the 48 discovered DDBs, 20 have

been observed to cause extensive data loss, 13 cause data
inconsistency, 7 cause log corruption, and 8 lead to system
unavailability after the crash. Due to their severity, 8 DDBs
have been assigned CVE identifiers at the time of writing,.
Moreover, 6 DDBs had been latent in production for over five
years. Developers have expressed surprise at the severity of
the data durability issues and shown strong interest in our
methods to enhance DBMS durability and reliability.

Case Study: A data durability bug leading to data loss
caused by unflushed write-ahead logs in MariaDB. Figure 10
illustrates the complete process of triggering this DDB with
3 steps. In Step (D, FAWKES creates two tables(t0, and ¢1) for
storing data in MariaDB and inserts several records into the
tables. Note that after executing the final INSERT statement,
the test performs a checkpoint to flush previous changes to
disk. In Step @, FAWKEs deliberately triggers a crash with
power failure, while MariaDB is executing multiple write op-
erations, including structure modifications and data inserts.
In Step), after the triggered crash, the MariaDB restarts
and initiates its recovery process. The expectation is that the
DBMS will utilize its write-ahead logs (WAL) to restore to
a consistent state without data loss. However, FAWKES ob-
serves that table t0 and ¢1 are missing post-recovery, along
with the data inserted in these two tables that both had been
committed to disk prior to the crash.

The root cause of the bug. In MariaDB, the WAL mechanism
is designed to ensure data durability by recording all write
operations before the actual data files are modified. When a
write request arrives, MariaDB performs filesystem calls (e.g.,
write, fsync) to flush data and WAL entries to disk. During
recovery, the DBMS replays these WAL entries to revert to
their final consistent state. However, FAWKES discovered an
implementation error in the WAL flushing mechanism. If a
crash interrupts a write call while modifying the storage
group structure, certain changes are logged incorrectly. Con-
sequently, the recovery process fails to restore data properly.

(1) Create Initial Data

CREATE TABLE t0 (c1 INT, c2 FLOAT, ¢3 TEXT);

CREATE TABLE t1 (c4, DOUBLE, c5 DATE, c6 INT);

INSERT INTO t0 (c1,c2,c3) value (1, 1222.1, 'employ");

ALTER TABLE t0 ADD BTREE INDEX i1 on c1;

INSERT INTO t1 (c4,c5,c6) values(...); -- DBMS Checkpoint;

(2) Modify the Data and Inject Fault

ALTER TABLE t1 ADD HASH INDEX i2 i2 on c4;

ALTER TABLE t1 ADD CONSTRAINT k1 FOREIGN KEY (c6) REFERENCE tO(s0);
ALTER TABLE t0 ADD t1 PRIMARY KEY (c1, c2); A Power Failure
(3) Check the Data Information after Recovery

SHOW TABLES t0, t1; * t0 and t1 does not exist

Figure 10. The steps to trigger a DDB in MariaDB.

Why the bug was only discovered by FAWKEs? We also test
MariaDB with Jespen, CrashFuzz, Mallory, and CrashTuner
but they do not find this bug. Detecting this particular issue
requires a power failure to occur precisely while an ALTER
TABLE statement invokes the write system call for logging

11

WAL, followed by metadata verification after recovery. Tra-
ditional approaches face difficulty injecting faults at such
a narrow timing window, which induces random crashes
rather than triggering power failure or precisely targeting
the moment a write call is made. Besides, they can not detect
data loss and data inconsistency in a single node.

In contrast, FAWKEs instruments all filesystem and kernel
calls to identify fault injection sites through context-aware
fault injection and employs functionality-guided fault trig-
gering to generate workloads and quickly cover these fault
injection sites. When MariaDB invokes a write system call,
FAWKES can inject one of the fault types summarized in Find-
ing 5 (e.g., power failure) to provoke the crash at exactly
the needed moment. By examining the DBMS’s data and
metadata before and after recovery, FAWKES detects this data
loss problem that is overlooked by other testing techniques.

6.3 Compared With Other Techniques

To evaluate FAWKES’s effectiveness, we compared it with
four state-of-the-art fault injection tools Jespen, CrashFuzz,
Mallory, and CrashTuner, which are commonly used for as-
sessing data robustness and consistency in the industry. We
ran each testing tool on various DBMSs for 72 hours, record-
ing the number of detected DDBs and covered branches as
performance metrics. Since each tool employs different fault
injection mechanisms, we use covered branches to gauge
how thoroughly each approach exercises the DBMS code. No-
tably, because the other tools lack SQL generator, we adapted
Fawkes’s workload generation to them.

Table 3. Number of branches by each tool in 72 hours.

DBMS ‘ Jespen ‘ CrashFuzz ‘ Mallory ‘ CrashTuner ‘ FAWKES
MySQL 15,304 | 17,583 | 19,293 19,001 33,203
MariaDB | 30,445 | 30455 | 39,578 30,945 41,913
PostgreSQL | 13,731 | 23,034 | 21,029 16,733 29,002
IoTDB 10,934 | 19,203 | 17,363 12,393 30,929
TDengine | 21,034 | 28393 | 19,293 26,393 43,182
GridDB 30,123 | 33,012 | 31,023 21,039 42,034
CnosDB | 23,731 | 33,034 | 38,273 31,283 49,002
OpenGemini | 29,302 | 32271 | 32,283 31,023 51,583
Total |174,604| 216,985 | 218135 | 188,810 | 320,848

Covered Branches. Table 3 shows covered branches
by each technique in 72 hours. FAWKES outperforms the
other tools by covering 84%, 48%, 47%, and 70% more code
branches than Jespen, CrashFuzz, Mallory, and CrashTuner,
respectively. This enhanced coverage stems from FAWKES’s
comprehensive fault injection and selection strategies. With
context-aware fault injection, FAWKES can introduce faults
into code segments about filesystem or kernel-level system
calls in DBMS, while tracking coverage of these fault injec-
tion sites throughout testing. With functionality-guided fault
triggering, FAWKES systematically traverses underexplored

execution paths, uncovering more code branches and fault
injection sites than other tools might miss.

Table 4. Number of bugs detected by each tool in 72 hours.

DBMS ‘]espen ‘ CrashFuzz ‘ Mallory ‘ CrashTuner ‘ FAWKES
MySQL 0 1 0 0 2
MariaDB 0 0 0 0 3
PostgreSQL 0 0 1 0 1
1oTDB 0 0 1 0 9
TDengine 1 1 1 0 3
GridDB 0 1 0 0 2
CnosDB 0 0 1 0 4
OpenGemini 1 1 2 1 5
Total | 2 | 4 | 6 | 1 | 29

Detected Bugs. Table 4 displays detected bugs by each
tool, demonstrating that FAWKESs outperforms the other tools
in identifying bugs. In 72 hours, FAWKEs detected 29 DDBs
across the tested DBMSs, while Jespen, CrashFuzz, Mal-
lory, CrashTuner only found 2, 4, 6, and 1 bugs, respec-
tively. One main reason for FAWKES’s superior performance
is its targeted fault injection and selection strategy, which
focuses on critical data durability mechanisms and covers
more code branches, thereby contributing to uncovering hid-
den bugs. Moreover, its checkpoint-based recovery verifica-
tion(comparing the recovered data state against the metadata
in the data graph), enables FAWKES to uncover data loss, data
inconsistency, and log corruption that are missed by others.

To better understand the relationships among the bugs
detected by different tools, we analyzed their corresponding
bug reports. Among the 29 DDBs found by FAWKEs, 2, 2,
4, and 1 bug are overlapped with Jespen, CrashFuzz, Mal-
lory, and CrashTuner, respectively. The overlapping DDBs
all manifest as system unavailability, which is the symptom
commonly captured by other tools. Nevertheless, there re-
main 27, 27, 25, and 28 bugs that were exclusively identified
by Fawkes. These bugs are only found by FAWKES because
other tools do not detect data consistency, data loss, and log
corruption. Moreover, FAWKES is guided to cover fault in-
jection sites related to the file system and kernel-level calls,
which are critical for triggering DDBs but have received
limited attention in other tools.

6.4 Contributions of Each Component.

To understand the contributions of each component, we
implement FAwkEs ™%, FAWKEs !, FAWKEs */. FAwkgs ™%
uses the random fault injection algorithm of Jespen to ran-
domly inject and trigger faults. Besides, FawkEes ™% also de-
tects bugs following Jespen methods, which can only detect
system unavailability. Building on FAWKEs ™%, FAWKEs ? in-
corporates context-aware fault injection to precisely target
critical code regions. Extending FAWKEs /, FAWKEs ' adds
functionality-guided fault triggering mechanism, enabling

12

functionality-directed workload generation and fault trigger-
ing. Fawkes %/ (i.e., FAWKES) enables all three components.

Table 5. Number of branches covered by each tool.

DBMS ‘ Fawkes ™4l ‘ FAWKES ! ‘ Fawkes + ‘ Fawkes 9!
MySQL 16,711 24,393 33,405 33,203
MariaDB 29,945 31,739 42,034 41,913
PostgreSQL 14,934 24,495 31,023 29,002
IoTDB 11,004 21,304 31,003 30,929
TDengine 20,416 30,203 43,433 43,182
GridDB 31,533 33,847 42,915 42,034
CnosDB 23,422 34,925 51,023 49,002
OpenGemini | 30,495 32,271 52,063 51,583
Total | 178460 | 233,177 | 326,899 | 320,848

Table 5 and Table 6 summarize the branch coverage and
detected bugs over 72 hours. With context-aware fault injec-
tion, FAWKEs detects 3 more bugs than FAwkgs ™%, This im-
provement stems from its precise fault injection strategy tar-
geting filesystem or kernel-level call code regions in DBMS,
where most DDBs occur while meeting faults (as indicated
by Finding 4). Building on that, FAwkEs * achieves 40.1%
additional branches and 3 more bugs than FAwkEs ’. This
improvement stems from systematically exploring rarely ex-
ecuted code paths and fault injection sites with functionality-
guided fault triggering. Finally, when checkpoint-based data
graph verification is enabled, Fawxkes %/ covers 1.8% fewer
branches due to additional runtime overhead, but it detects
21 more DDBs than Fawkes ! by effectively identifying
subtle DDBs such as data loss, data inconsistency, and log
corruption, in addition to system unavailability.

Table 6. Number of bugs detected by each tool in 72 hours.

DBMS ‘ FawkEs ™4 ‘ FAWKES ‘ FAWKES ‘ Fawkes !
MySQL 0 1 1 2
MariaDB 0 1 1 3
PostgreSQL 0 0 1 1
IoTDB 0 1 2 9
TDengine 1 1 1 3
GridDB 0 0 0 2
CnosDB 0 0 1 4
OpenGemini 1 1 1 5
Total | 2 | 5 | 8 | 29

6.5 Rediscovery of Surveyed DDBs

To evaluate FAWKES’s effectiveness in identifying DDBs, we
conducted an experiment to see if it could rediscover 43 pre-
viously studied DDBs in Section 3. Our goal was to evaluate
whether FAWKES could systematically detect these DDBs in
real-world settings. We applied FAWKEs to corresponding
versions of PostgreSQL, MySQL, IoTDB, and TDengine for

each DDB, running for two weeks for detection. A bug was
considered rediscovered if it manifested in the same way as
originally reported (e.g., data loss, data inconsistency, log
corruption, or system unavailability). Figure 11 shows the
cumulative number of rediscovered DDBs over two weeks.

40 —B Total Number
[MysaL

35 [PostgreSQL
[1oTDB

30 [TDengine

25

20

ot

1 Da 3 Da 5Da 7 Da 9Day 11 Day 13 Day 14 Da
y y y y y y y y

Number of Rediscovered Bugs

Figure 11. Number of rediscovered bugs in two weeks.

Within the first one week, FAWKES rediscovered 34 (79%) of
the 43 bugs, demonstrating its efficiency in rapidly exposing
amounts of data durability issues. By the end of two weeks,
FAwkEs increased the total number of rediscovered bugs to
39, representing 91% of the previously studied DDBs. This
includes 6 bugs in PostgreSQL, 9 out of 11 in MySQL, 14 out
of 15 in IoTDB, and 10 out of 11 in TDengine.

The high rediscovery rate is attributed to three main fea-
tures of FAWKES. First, the context-aware fault injection
systematically identifies and injects faults when DBMS exe-
cutes the path of the filesystem or kernel-level call functions
to trigger more DDBs. First, its context-aware fault injection
systematically identifies and injects faults along filesystem
and kernel-level call paths to trigger more DDBs. Second,
its functionality-guided fault triggering rapidly covers more
code branches and fault injection sites, improving testing effi-
ciency. Finally, checkpoint-based data graph verification can
detect data loss, data inconsistency, log corruption, and sys-
tem unavailability. Together, these strategies enable FAWKES
to thoroughly test critical durability-related paths and un-
cover hidden DDBs in DBMS implementations.

7 Discussion

Missed Rediscoveries. Although FAWKEs successfully re-
produced 39 bugs in Section 6.5, it failed to rediscover 4
remaining bugs during the two-week experiments. There are
two main reasons for these missed cases. First, 2 undiscov-
ered bugs required specific execution paths that were not
covered within two weeks; extending the test period to 23
days eventually led FAWKES to reproduce them. Second, the
other 2 bugs depended on specialized DBMS configurations
absent in our default environment. Since FAWKEs does not
modify DBMS configurations, the requisite settings for this
bug were never enabled. For this configuration-dependent

13

DDB, we can combine FAWKEs with DBMS configuration-
testing methods (e.g., Mozi [34]) to enable the necessary
settings and uncover them.

Extend to Other Testing Tools. Although FAWKES pri-
marily targets DDBs in single-node DBMSs by injecting
faults at filesystem or kernel-level code regions, its fault-
triggering strategy and data graph validation can also benefit
other DBMS testing tools. First, the injection and triggering
strategies can also be applied to distributed DBMSs to en-
hance durability. Second, integrating FAWKES’s functionality-
guided workload generation with grammar-based SQL gen-
erators (e.g., SQUIRREL [66]) would allow them to focus on
durability-critical paths for triggering DDBs. Finally, the data
graph validation could be adopted by metamorphic testing
methods (e.g., SQLancer [50]) to detect SQL correctness bugs.

Overhead of FAWKES. FAWKES continuously injects faults
during the SQL execution and verifies the recovery DBMS
state to detect DDBs with checkpoint-based data graph anal-
ysis, which may import overhead. We accessed FAWKES’s
overhead by disabling its continuous fault injection (FAWKES
injection=y and data graph analysis (FAWKEs 9"%P"~) sepa-
rately, measuring cases executed and DDBs found over a
24-hour experiment on 8 DBMSs.

Table 7. Overhead Evaluation of FAWKES in 24 hours.

‘ FAWKES FAWKES Jection= Fawggs 9raph-
Test Cases Executed | 1,434,559 4,070,465 1,475,236
DDBs Found 12 0 3

Table 7 shows that the overhead introduced by contin-
uous fault injection and metadata graph analysis reduces
the executed test cases by 64.8% and 2.8%, respectively. The
overhead of continuous fault injection arises from the in-
strumented code as well as the process of DBMS crash and
recovery. The overhead of data graph analysis arises from
maintaining graph and verifying DBMS states. However,
FAWKES "/¢¢tion= and Fawkes 97°?h~ found 12 and 9 fewer
DDBs than FAWKEs, respectively. Without continuous fault
injection, FAWKES "/¢¢1"= cannot explore diverse failure
scenarios and fails to detect DDBs. Without data graph anal-
ysis, FAWKES 97"~ can only detect system unavailability
and fails to identify issues such as data loss, inconsistency,
and log corruption.

Influence of the DBMS tuning parameters. DBMS
tuning parameters may impact FAWKEs ’ effectiveness for
detecting DDBs. Some settings directly affect the rate at
which FAWKEs executes test cases. For example, when run-
ning FAWKES on MySQL, lowering the checkpoint frequency
(i.e., increasing the time per checkpoint) slows test case ex-
ecution and thus reduces the pace of bug discovery. This
occurs primarily because higher time per checkpoint leads
to higher overhead for Fawkes to rectify the data graph upon
DBMS crashes, consequently reducing the total number of

executed test cases and detected DDBs. In the evaluation, we
set the DBMS’s default tuning parameters for experiments.

Effort to Adapt to New DBMS. In our practice, it takes
a master student about 2 to 3 days to complete the adap-
tation for a new database. Adapting a new DBMS involves
four steps. 1Adapting the DBMS syntax: we developed a
syntax adaptation tool based on Bison and Flex that can au-
tomatically adapt according to the database’s grammar files.
2ldentifying fault injection sites: we use a library-based in-
jection approach, mainly leveraging a C-language compiler
toolchain and a Java-based ASM framework to automati-
cally analyze and identify all fault injection sites during
the database compilation process. This process is fully au-
tomated. 3Building and adapting the fault functionality ta-
ble: through code control flow analysis and code annotation
analysis, we automatically identify parts of the code that
affect the syntax, then verify them manually with the help of
documentation. 4Adapting the database recovery validation
mechanism: based on Write-Ahead Logging (WAL), this step
requires adaptation to the log formats of different databases.

8 Related Work

DBMS Testing. Database systems are complex and are prone
to various issues. To improve the reliability of DBMS, a va-
riety of DBMS testing tools have been developed to detect
bugs(e.g., crash, logic bug, and performance bug) [52, 66, 61,
32, 33, 58, 60, 59, 22, 23, 51].

For crash detection, SQLsmith[53] uses a generative ap-
proach to discover crash issues by generating a large num-
ber of test cases. Similarly, SQUIRREL [66], LEGO[32], Ra-
tel [58], and GRIFFIN[21] apply coverage feedback techniques
to trigger crashes. UNICORN [61] designs time-series muta-
tion to test time-series databases. For logic bug detection,
SQLancer[52] adopts a metamorphic testing approach[50,
51, 11, 63] to detect logical errors in DBMS. DQE[54] extends
this idea by verifying whether different SQL queries with
equivalent predicates access consistent row sets. Moz1[34]
proposes a configuration-based equivalence transformation
framework that leverages DBMS-specific optimizations to
expose hidden logic bugs. TQS[55] decomposes wide tables
into smaller ones and synthesizes join queries, using the
original table as a ground truth reference. TxCheck [29]
constructs semantically equivalent test cases based on fine-
grained statement-level dependencies in transactions to de-
tect isolation bugs in DBMS. PINOLO [26] introduces a result-
set containment approach, generating queries whose results
should be supersets or subsets of a reference query; dis-
crepancies are used to identify violations of expected result
relationships. Zheng et al. propose a prototype that detects
potential violations of the ACID properties in DBMS by fo-
cusing on simulating power failures [64]. For performance
bug detection, Aporro [31] utilizes differential testing on
multiple versions to test regression testing. AMOEBA [35]

14

generates equivalent queries and compares their response
time to find performance issues in DBMS.

However, existing DBMS testing tools are inadequate for
testing DDBs. They primarily target relational semantics
and overlook the implementation errors in data durability
and recovery mechanisms. Moreover, these tools can not
inject faults at precise code segments and verify post-crash
consistency, hindering comprehensive DDB detection. By
contrast, our approach automatically injection faults and
detect DDBs with recovered data state verification.

Fault Injection. Fault injection techniques have long
been recognized as a crucial method for validating the re-
liability of systems, especially in the context of embedded
and distributed systems Random fault injection introduces
faults at arbitrary locations or times during the execution
of the system, simulating unpredictable failures in the real
world [28, 13, 43, 20]. System fault injection follows a de-
liberate strategy of injecting faults at specific points during
execution, guided by predefined rules [10, 25, 30]. These rules
can be specified by the user or derived through heuristics.
Besides fault injection, modeling checking [62, 41], log anal-
ysis [38, 37], and fuzzing are also used to find crash recovery
bugs. For example, MODIST [62] systematically simulates
different network failures. CrashTuner [38] finds crash re-
covery bugs through log analysis. Moreover, CrashFuzz [24]
utilizes fuzzing to find crash recovery bugs guided by cover-
age. ALICE [46] simulates different persistence properties of
file systems to trigger crashes and detect recovery bugs.

While existing error injection tools often concentrate on
faults at the distributed node level, FAWKEs targets specific
data durability in single-node DBMS, particularly those in-
volving filesystem or kernel-level calls. Additionally, FAWKES
can identify data loss, data inconsistency, and log corruption
of DDBs, which is not addressed by other tools.

9 Conclusion

This paper presented a study of 43 DDBs across 4 DBMSs.
Our findings reveal that DDBs manifest as data loss, data
inconsistencies, log corruption, and system unavailability.
They are often triggered by faults occurring at filesystem
or kernel-level calls during SQL operations. We developed
FAWKES to detect DDBs with recovered data state verification.
Finally, FAWKEs uncovered 48 previously unknown DDBs
across eight popular DBMSs, 16 of which have been fixed and
8 assigned with CVE identifiers. In the future, we will adapt
FAWKES to test more DBMS and improve their reliability.

Acknowledgements

We thank the shepherd and reviewers for their valuable com-
ments. This research is partly sponsored by the National Key
Research and Development Project (No. 2022YFB3104000),
NSFC Program (No. 62525207, 62302256, 92167101, 62021002,
U2441238), and CCF-ApsaraDB Research Fund(No. 2024007).

References

[1] Crash recovery to ensure durability.
//docs.oracle.com/en-us/iaas/mysql-database/
doc/crash-recovery.html/. Accessed: September 4,
2025.

[2] Data durability in dbms. https://en.wikipedia.org/wiki/
Durability_(database_systems). Accessed: September

https:

4, 2025.

[3] Mariadb. https://mariadb.org/. Accessed: September 4,
2025.

[4] Mysql. https://www.mysql.com/. Accessed: September
4, 2025.

[5] Official iotdb grammar file. https:

//github.com/apache/iotdb/blob/
858c8b8538ba5dd370ce9604e659bd0050303c58/
iotdb-core/antlr/src/main/antlr4/org/apache/iotdb/
db/qp/sql/loTDBSqlParser.g4#L4. Accessed: September
4, 2025.

[6] Official mariadb grammar file. https://github.com/
MariaDB/server/blob/main/sql/sql_yacc.yy. Accessed:
September 4, 2025.

[7] Official mysql grammar file.
//github.com/mysql/mysql-server/blob/
f05628a530696bc6851ba6540ac250c7a059aa7/sql/
sql_yacc.yy. Accessed: September 4, 2025.

[8] Official postgresql sql grammar file. https:
//github.com/postgres/postgres/blob/master/src/
backend/parser/gram.y. Accessed: September 4, 2025.

[9] Postgresql. https://www.postgresql.org/. Accessed:
September 4, 2025.

[10] ALvaro, P., ROSEN, J., AND HELLERSTEIN, J. M. Lineage-
driven fault injection. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015 (2015), T. K. Sellis, S. B. Davidson, and Z. G. Ives,
Eds., ACM, pp. 331-346.

[11] Ba,]J., AND RIGGER, M. Keep it simple: Testing databases
via differential query plans. Proceedings of the ACM on
Management of Data 2, 3 (2024), 1-26.

[12] CamPBELL, L., AND MAjoRs, C. Database reliability en-

gineering: designing and operating resilient database sys-

tems. " O’Reilly Media, Inc", 2017.

CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos

made live: an engineering perspective. In Proceedings

of the Twenty-Sixth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2007, Portland,

Oregon, USA, August 12-15, 2007 (2007), I. Gupta and

R. Wattenhofer, Eds., ACM, pp. 398—407.

CoMMITEE, P. Write-ahead logging (wal) in post-

gresql. https://www.postgresql.org/docs/current/wal-

intro.html. Accessed: September 4, 2025.

[15] CommunITy, C. Cnosdb github, 2021.

[16] CommuniITy, O. Opengemini github, 2021.

https:

(13]

(14]

15

[17] CommuntTY, P. Postgresql bug list. https://
www.postgresql.org/. Accessed: September 4, 2025.

[18] CommunITy, P. Postgresql test, Today.

[19] Company, G. Griddb: Open database supporting cyber-
physical systems, 2019.

[20] FounpaTiON, A. S. Fault injection framework and

development guide. https://hadoop.apache.org/

docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/

FaultinjectFramework.html. Accessed: September 4,

2025.

Fu,], L1ANG,]., WU, Z., WANG, M., AND JIANG, Y. Griffin:

Grammar-free dbms fuzzing. In Conference on Auto-

mated Software Engineering (ASE’22) (2022).

Fu, J., Li1aNG, J., Wu, Z., ZHAO, Y., LI, S., AND JIANG,

Y. Understanding and detecting sql function bugs: Us-

ing simple boundary arguments to trigger hundreds of

dbms bugs. In Proceedings of the Twentieth European

Conference on Computer Systems (2025), pp. 1061-1076.

Fu, Y, Wu, Z., ZuaNgG, Y., L1aNG,], Fu,]., JiANG, Y.,

Ly, S., AND L1ao, X. Thanos: Dbms bug detection via

storage engine rotation based differential testing. In

2025 IEEE/ACM 47th International Conference on Soft-

ware Engineering (ICSE) (2024), IEEE Computer Society,

pp. 1-12.

Gao, Y, Dou, W., WANG, D., FENG, W., WEL,]., ZHONG,

H., aAND Huang, T. Coverage guided fault injection for

cloud systems. In 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE) (2023), IEEE,

pp. 2211-2223.

GunNnawi, H. S, Do, T,, JosHi, P., ALvARO, P., HELLER-

STEIN, J. M., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,

R. H, SEN, K., AND BORTHAKUR, D. FATE and DESTINI:

A framework for cloud recovery testing. In Proceedings

of the 8th USENIX Symposium on Networked Systems De-

sign and Implementation, NSDI 2011, Boston, MA, USA,

March 30 - April 1, 2011 (2011), D. G. Andersen and

S. Ratnasamy, Eds., USENIX Association.

Hao, Z., HuANG, Q., WANG, C., WANG,]., ZHANG, Y., WU,

R., AND ZHANG, C. Pinolo: Detecting logical bugs in

database management systems with approximate query

synthesis. In 2023 USENIX Annual Technical Conference

(USENIX ATC 23) (2023), pp. 345-358.

IBM. Checkpoints. https://www.ibm.com/docs/en/

informix-servers/12.10?topic=recovery-checkpoints.

Accessed: September 4, 2025.

[28] JepsEN. Jepsen. https://github.com/jepsen-io/jepsen,
2024. Accessed: September 4, 2025.

[29] JiaNG, Z.-M., L1y, S., RIGGER, M., AND Su, Z. Detect-
ing transactional bugs in database engines via {graph-
based} oracle construction. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
23) (2023), pp. 397-417.

[24]

[25]

https://docs.oracle.com/en-us/iaas/mysql-database/doc/crash-recovery.html/
https://docs.oracle.com/en-us/iaas/mysql-database/doc/crash-recovery.html/
https://docs.oracle.com/en-us/iaas/mysql-database/doc/crash-recovery.html/
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://mariadb.org/
https://www.mysql.com/
https://github.com/apache/iotdb/blob/858c8b8538ba5dd370ce9604e659bd0050303c58/iotdb-core/antlr/src/main/antlr4/org/apache/iotdb/db/qp/sql/IoTDBSqlParser.g4#L4
https://github.com/apache/iotdb/blob/858c8b8538ba5dd370ce9604e659bd0050303c58/iotdb-core/antlr/src/main/antlr4/org/apache/iotdb/db/qp/sql/IoTDBSqlParser.g4#L4
https://github.com/apache/iotdb/blob/858c8b8538ba5dd370ce9604e659bd0050303c58/iotdb-core/antlr/src/main/antlr4/org/apache/iotdb/db/qp/sql/IoTDBSqlParser.g4#L4
https://github.com/apache/iotdb/blob/858c8b8538ba5dd370ce9604e659bd0050303c58/iotdb-core/antlr/src/main/antlr4/org/apache/iotdb/db/qp/sql/IoTDBSqlParser.g4#L4
https://github.com/apache/iotdb/blob/858c8b8538ba5dd370ce9604e659bd0050303c58/iotdb-core/antlr/src/main/antlr4/org/apache/iotdb/db/qp/sql/IoTDBSqlParser.g4#L4
https://github.com/MariaDB/server/blob/main/sql/sql_yacc.yy
https://github.com/MariaDB/server/blob/main/sql/sql_yacc.yy
https://github.com/mysql/mysql-server/blob/ff05628a530696bc6851ba6540ac250c7a059aa7/sql/sql_yacc.yy
https://github.com/mysql/mysql-server/blob/ff05628a530696bc6851ba6540ac250c7a059aa7/sql/sql_yacc.yy
https://github.com/mysql/mysql-server/blob/ff05628a530696bc6851ba6540ac250c7a059aa7/sql/sql_yacc.yy
https://github.com/mysql/mysql-server/blob/ff05628a530696bc6851ba6540ac250c7a059aa7/sql/sql_yacc.yy
https://github.com/postgres/postgres/blob/master/src/backend/parser/gram.y
https://github.com/postgres/postgres/blob/master/src/backend/parser/gram.y
https://github.com/postgres/postgres/blob/master/src/backend/parser/gram.y
https://www.postgresql.org/
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/
https://www.postgresql.org/
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
https://www.ibm.com/docs/en/informix-servers/12.10?topic=recovery-checkpoints
https://www.ibm.com/docs/en/informix-servers/12.10?topic=recovery-checkpoints
https://github.com/jepsen-io/jepsen

[30] JosHi, P., Gunawi, H. S., AND SEN, K. PREFAIL: a pro-
grammable tool for multiple-failure injection. In Pro-
ceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011,
Portland, OR, USA, October 22 - 27, 2011 (2011), C. V.
Lopes and K. Fisher, Eds., ACM, pp. 171-188.

[31] Jung, J., Hu, H., AruLRraj, J., Kim, T., AND KANG, W.
APOLLO: Automatic Detection and Diagnosis of Perfor-
mance Regressions in Database Systems (to appear). In
Proceedings of the 46th International Conference on Very
Large Data Bases (VLDB) (Tokyo, Japan, Aug. 2020).

[32] LiaNg, J., CHEN, Y., WU, Z., Fu,]., WANG, M., JIANG, Y.,
Huang, X., CHEN, T., WANG, J., AND L1, J. Sequence-
oriented dbms fuzzing. In 2023 IEEE International Con-
ference on Data Engineering (ICDE), IEEE.

[33] LiaNng, J., Wu, Z., Fu, J., Bar, Y., ZHANG, Q., AND JIANG,
Y. {WingFuzz}: Implementing continuous fuzzing for
{DBMSs}. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24) (2024), pp. 479-492.

[34] LiaNng, J., Wu, Z,, Fu, J., WANG, M., SUN, C., AND JIANG,
Y. Mozi: Discovering dbms bugs via configuration-
based equivalent transformation. In Proceedings of the
IEEE/ACM 46th International Conference on Software
Engineering (2024), pp. 1-12.

[35] Liu, X, ZHOU, Q., ARULRA]J, J., AND ORsO, A. Automatic
detection of performance bugs in database systems us-
ing equivalent queries.

[36] Ltp, R. G. S. Db-engines ranking of time se-

ries dbms. https://db-engines.com/en/ranking/time+

series+dbms. Accessed: September 4, 2025.

Lu, J, L1, F, Liu, C., L1, L, FENG, X., AND XUE,]J.

Cloudraid: Detecting distributed concurrency bugs via

log mining and enhancement. IEEE Trans. Software Eng.

48, 2 (2022), 662-677.

Lu,], Ly, C., L1, L, FENG, X,, TAN, F., YANG, J., AND You,

L. Crashtuner: detecting crash-recovery bugs in cloud

systems via meta-info analysis. In Proceedings of the

27th ACM Symposium on Operating Systems Principles,

SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019

(2019), T. Brecht and C. Williamson, Eds., ACM, pp. 114~

130.

[39] MARIADB. Innodb undo log. https://mariadb.com/kb/
en/innodb-undo-log/. Accessed: September 4, 2025.

[40] MENG, R., PIRLEA, G., ROYCHOUDHURY, A., AND SERGEY,
L. Greybox fuzzing of distributed systems. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (2023), pp. 1615-1629.

[41] MusuvaThi, M., PARk, D. Y. W,, CHOU, A., ENGLER, D. R,,
AND Dirr, D. L. CMC: A pragmatic approach to model
checking real code. In 5th Symposium on Operating
System Design and Implementation (OSDI 2002), Boston,
Massachusetts, USA, December 9-11, 2002 (2002), D. E.
Culler and P. Druschel, Eds., USENIX Association.

(37]

16

[42] MYSQL. Mysql 8.0: New lock free, scalable wal de-
sign. https://dev.mysql.com/blog-archive/mysql-8-0-
new-lock-free-scalable-wal-design/. Accessed: Septem-
ber 4, 2025.

[43] Chaos monkey. https://netflix.github.io/chaosmonkey/.
Accessed: September 4, 2025.

[44] OrAcLE. Mysql bug list. https://bugs.mysql.com/, 1
2014. Accessed: September 4, 2025.

[45] ORACLE. Mysql test, Today.

[46] PrLral, T. S., CHIDAMBARAM, V., ALAGAPPAN, R., AL-
KiswaNy, S., ArRrpAacI-Dusseau, A. C., AND ARPACI-
Dusseau, R. H. All file systems are not created equal:
On the complexity of crafting {Crash-Consistent} ap-
plications. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (2014),
pp. 433-448.

[47] PosT, G. V. Database management systems. PHI Learn-
ing Pvt. Limited, 2009.

[48] Q1ao0,]. Apache iotdb: Database for internet of things,
2024.

[49] Q1ao0, J. Apache iotdb github, 2024.

[50] RIGGER, M., AND Su, Z. Detecting optimization bugs in
database engines via non-optimizing reference engine
construction. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(2020), pp. 1140-1152.

[51] RIGGER, M., AND Su, Z. Finding bugs in database sys-
tems via query partitioning. Proceedings of the ACM on
Programming Languages 4, OOPSLA (2020), 1-30.

[52] RIGGER, M., AND Su, Z. Testing database engines via
pivoted query synthesis. In 14th USENIX Symposium
on Operating Systems Design and Implementation OSDI
20) (2020), pp. 667—682.

[53] SELTENREICH, A., TANG, B., AND MULLENDER, S. Sql-
smith: a random sql query generator.

[54] Song, J., Dou, W, Cuti, Z., Da1, Q., WANG, W., WEL],
ZHONG, H., AND HuaNg, T. Testing database systems
via differential query execution. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE)
(2023), IEEE, pp. 2072-2084.

[55] Tang, X., Wu, S., ZHANG, D,, L1, F., AND CHEN, G. Detect-
ing logic bugs of join optimizations in dbms. Proceedings
of the ACM on Management of Data 1, 1 (2023), 1-26.

[56] TaosData. Tdengine github, 2024.

[57] TaosDatA. Tdengine website, 2024.

[58] WaANG, M., Wu, Z., Xu, X,, LIANG, J., ZHOU, C., ZHANG,
H., AND JIANG, Y. Industry practice of coverage-guided
enterprise-level dbms fuzzing. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP) (2021), IEEE,
pp. 328-337.

[59] Wu, Z., LiaNg, J., Fu, J., WANG, M., AND JIANG, Y.
Puppy: Finding performance degradation bugs in dbmss

https://db-engines.com/en/ranking/time+series+dbms
https://db-engines.com/en/ranking/time+series+dbms
https://mariadb.com/kb/en/innodb-undo-log/
https://mariadb.com/kb/en/innodb-undo-log/
https://dev.mysql.com/blog-archive/mysql-8-0-new-lock-free-scalable-wal-design/
https://dev.mysql.com/blog-archive/mysql-8-0-new-lock-free-scalable-wal-design/
https://netflix.github.io/chaosmonkey/
https://bugs.mysql.com/

[60]

[61]

(63]

[64]

[65]

[66]

via limited-optimization plan construction. In 2025
IEEE/ACM 47th International Conference on Software En-
gineering (ICSE) (2024), IEEE Computer Society, pp. 560—
571.

Wu, Z., LiaNg,], Fu, J., WANG, M., AND JIANG, Y.
Hulk: Exploring data-sensitive performance anomalies
in dbmss via data-driven analysis. Proceedings of the
ACM on Software Engineering 2, ISSTA (2025), 2181-
2202.

Wu, Z., LIANG, J., WANG, M., ZHou, C., AND JIANG, Y.
Unicorn: Detect runtime errors in time-series databases
with hybrid input synthesis. In Symposium on Software
Testing and Analysis (ISSTA’22) (2022).

YANG, J., CHEN, T.,, Wu, M,, Xu, Z.,, Liu, X,, LIN, H,,
YaNG, M, LoNgG, F., ZHANG, L., AND ZHOU, L. MODIST:
transparent model checking of unmodified distributed
systems. In Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation, NSDI
2009, April 22-24, 2009, Boston, MA, USA (2009), J. Rex-
ford and E. G. Sirer, Eds., USENIX Association, pp. 213—
228.

ZHANG, C., AND RIGGER, M. Constant optimization
driven database system testing. Proceedings of the ACM
on Management of Data 3, 1 (2025), 1-24.

ZHENG, M., TUCEK, J., HUANG, D., QIN, F., LILLIBRIDGE,
M., YANG, E. S., ZHAO, B. W., AND SINGH, S. Torturing
databases for fun and profit. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
14) (2014), pp. 449-464.

ZHENG, W., Tu, S., KoHLER, E., AND Liskov, B. Fast
databases with fast durability and recovery through
multicore parallelism. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14)
(2014), pp. 465-477.

ZHONG, R., CHEN, Y, Hu, H,, ZuANG, H., LEE, W., AND
Wu, D. Squirrel: Testing database management sys-
tems with language validity and coverage feedback. In
The ACM Conference on Computer and Communications
Security (CCS), 2020 (2020).

17

	Abstract
	1 Introduction
	2 Preliminaries of Data Durability
	3 Motivation Study
	3.1 Symptoms of Data Durability Bugs
	3.2 Triggering of the Data Durability Bugs
	3.3 Limitations of Existing Approaches

	4 Design of Fawkes
	4.1 Context-Aware Fault Injection
	4.2 Functionality-Guided Fault Triggering
	4.3 Checkpoint-Based Data Graph Verification

	5 Implementation
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Data Durability Bug Detection
	6.3 Compared With Other Techniques
	6.4 Contributions of Each Component.
	6.5 Rediscovery of Surveyed DDBs

	7 Discussion
	8 Related Work
	9 Conclusion

