Detecting Logic Bugs in DBMSs via Equivalent Data
Construction

WENQIAN DENG, Tsinghua University, China
JIE LIANG?, Beihang University, China
ZHIYONG WU, Tsinghua University, China
JINGZHOU FU, Tsinghua University, China
YU JIANG", Tsinghua University, China

Database Management Systems (DBMS) perform various data operations such as arithmetic calculations and
string manipulations when executing SQL queries. These operations are complex due to the wide range of
data types and the intricate interactions between different data. Consequently, errors in implementing these
data operations can lead to logic bugs, potentially causing issues such as implicit type coercion, overflow,
and precision loss. Existing logic bug detection methods primarily focus on issues introduced during query
optimization by adapting query-level strategies. However, these methods have limitations when it comes to
detecting logic bugs caused by implementation errors in data types and operations.

To address this, we propose equivalent data construction (EDC), a novel approach to detect logic bugs in
data operation implementations within DBMSs. The core insight is that for data operation expressions in SQL
queries, substituting them with precomputed result values should yield identical query outcomes. EDC mainly
involves the following steps: first, it constructs equivalent data for a given operation by computing and storing
the results in a transformed table; then, it transforms the query by replacing the operation expressions with
the corresponding precomputed results. Any inconsistencies between the results of the base and transformed
queries indicate potential logic bugs. We implemented EDC and evaluated it on seven well-tested and widely-
used DBMSs(e.g., MySQL, MariaDB). Our evaluation revealed 54 previously unknown bugs, of which 39 have
been confirmed by developers. The findings prompted active engagement from developers. For example,
MariaDB developers described our findings as counterintuitive, helping them uncover more issues related to
data operations.

ACM Reference Format:

Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang. 2025. Detecting Logic Bugs in DBMSs via
Equivalent Data Construction. Proc. ACM Manag. Data 3, 6 (SIGMOD), Article 314 (December 2025), 25 pages.
https://doi.org/10.1145/3769779

1 INTRODUCTION

Database Management Systems (DBMSs) contain various data operations, such as arithmetic
calculations and string manipulations [35]. These operations are inherently complex due to the
diverse range of data types involved, as well as the need to handle boundary conditions and precise
control over data representation. For example, arithmetic operations on floating-point numbers

“Jie Liang and Yu Jiang are the corresponding authors.

Authors’ addresses: Wenqian Deng, Tsinghua University, Beijing, China; Jie Liang, Beihang University, Beijing, China;
Zhiyong Wu, Tsinghua University, Beijing, China; Jingzhou Fu, Tsinghua University, Beijing, China; Yu Jiang, Tsinghua
University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/12-ART314

https://doi.org/10.1145/3769779

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

https://doi.org/10.1145/3769779
https://doi.org/10.1145/3769779

314:2 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

require careful management of rounding errors, while string manipulations must account for
varying character encodings and length constraints. Moreover, the complexity of data operations
also arises from the interactions between these operations and the underlying data types, which
are influenced by system architecture, configuration, and optimization rules. For instance, data
operations may involve implicit type conversions and varying treatments of different data types, as
well as handling implicit coercions, type overflows, or precision loss. Thus, logic bugs related to data
operations in DBMSs are more likely to arise not from individual operations in isolation, but from
subtle inconsistencies that emerge when multiple operations and data types interact in complex
ways. This complexity makes the implementation of data operations inherently error-prone.

There have been several studies on detecting logic bugs in DBMSs. For instance, EET [27]
targets expression-level transformations, TLP [37] partitions queries based on predicate logic,
and NoREC [36] rewrites queries to disable DBMS optimizations. Radar [45] introduces metadata
constraints to find potential bugs. While effective for exposing query planner and optimizer issues,
such as incorrect rewrites, joins, or predicate logic, previous tools mainly focus on the structural
aspects of query logic. They are not primarily designed to detect issues that stem from how data
operations behave over different data types, such as errors caused by implicit type coercions,
overflows, or precision loss. In this paper, we focus on a different class of correctness issues: logic
bugs arising from data types and operations. These issues often occur during the execution of data
operation expressions and are orthogonal to the logic targeted by previous tools.

The main challenge for detecting such logic bugs arising from complex and diverse data operations
lies in the lack of ground truth results. Data operations, such as arithmetic calculations and string
manipulations, often involve intricate interactions between different data types. These interactions
become even more complex when boundary conditions and unusual input patterns are introduced,
further increasing the likelihood of subtle processing errors. In the absence of reference outputs, it
becomes difficult to determine whether such behaviors are semantically correct, especially when
the intended behavior depends on subtle and undocumented implementation details. Therefore,
these issues are particularly challenging to identify, as they rarely result in obvious query-level
bugs but instead manifest as inconsistencies in how data is processed, transformed, or compared.

To address this, we propose Equivalent Data Construction (EDC), a novel approach to detect
logic bugs in data operation implementations within DBMSs. EDC is specifically designed to target
logic bugs arising from data types and operations, filling a significant gap in prior techniques that
have less explored this space. The core insight is that for data operation expressions in SQL queries,
replacing them with precomputed results should yield identical query results. It has the following steps:
(D Randomly select a data operation and generate a base table as the input. @ Compute the results
of the operation expression based on the data in the base table and store the results in a newly
transformed table. Note that the table is equivalent to the base table with respect to the operation
expression. 3 Generate a base SELECT query on the base table. @ Generate a transformed query
by replacing operation expressions (e.g., CONCAT (a1, a2)) in the base query with the corresponding
precomputed data (e.g., r) in the transformed table. & Compare the results of the query pairs, and
if they are inconsistent, it indicates a potential bug.

Figure 1 illustrates our approach on a test case that triggers a logic bug in MariaDB. This bug
had a widespread impact, affecting the use of the CONCAT operation with data containing strings,
numbers, dates, and other types. We generate this test case by constructing data equivalence based
on the CONCAT operation. Specifically, we first select the CONCAT operation and generate a base
table containing a VARCHAR column and a TEXT column populated with a single row of data. Next,
we compute the results of the expression CONCAT (a1, a2) based on the data in the base table and
store these results in the transformed table as r. After that, we first generate a base SELECT query
on the base table using the expression CONCAT (a1, a2) in the WHERE condition. Then, we create a

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:3

CREATE TABLE Tbase(al SELECT CONCAT (al, a2)
VARCHAR (20) , a2 TEXT); | FROM Tbase
INSERT INTO Tbase "| WHERE CONCAT (al, a2);
VALUES ('0.6782', '979'); -- Returns {} K
@ Create the base table ® Generate a random base query
CREATE TABLE Ttrans AS | SELECT r FROM Ttrans
SELECT CONCAT (al, a2) ”| WHERE r;
AS r FROM Tbase; -- Returns {'0.6782979'}
@ Derive the transformed table @ Generate a transformed query

Fig. 1. lllustrative example, based on a detected bug by EDC in MariaDB.

transformed query by replacing the expression CONCAT (al, a2) with the precomputed result r from
the transformed table. When we execute the two queries, the base query incorrectly returns zero
rows despite a valid match, whereas the transformed query correctly returns one. This discrepancy
reveals a bug in how MariaDB handles the CONCAT operation under this condition.

When we reported this bug to the developers, they identified the root cause as follows: “In some
contexts, text strings containing numbers where the integer part is zero and the fractional part is
non-zero were erroneously evaluated as FALSE in WHERE conditions.” [2] They further discovered
that the bug was important and needed to be fixed because it affected multiple data types and
involved changes to 10 internal classes, requiring modifications to more than a thousand lines of
code. Our approach is effective in detecting this kind of logic bug because it innovatively establishes
metamorphic relationships by replacing data with its equivalents. This enables the exploration
of a broad range of combinations involving different data types and operations, facilitating the
detection of data-level issues in DBMSs. In contrast, existing approaches often emphasize query-
level equivalence, addressing a different aspect of DBMSs.

To evaluate the effectiveness of EDC, we used it to test seven widely-used DBMSs, i.e., MySQL [10],
MariaDB [8], Percona [4], PostgreSQL [13], TiDB [15], OceanBase [12] and ClickHouse [5]. Although
these databases had undergone thorough testing, EDC still reported a total of 54 bugs. Among
these, 39 bugs have been confirmed by the developers of the corresponding DBMSs. The reported
issues received active attention from the developer communities. For example, TiDB developers
actively inquired about our approach and acknowledged its effectiveness, while MariaDB developers
described our findings as counterintuitive, helping them uncover more issues related to data
operations. We also evaluate EDC against 3 state-of-art testing techniques, i.e., TLP [37], Radar [45],
and EET [27]. In 24-hour experiments, EDC detected 38 bugs across seven DBMSs, including 35
that were not reported by existing tools. This result underscores the distinct bug-detection scope
of EDC and its potential to complement prior approaches. We make the following contributions:

e We demonstrate that logic bugs arising from data operations, such as type conversions and
precision errors, can be significant. However, these issues are often underrepresented in the
findings of existing tools, which tend to focus primarily on query-level transformations.

e We propose a novel approach EDC that is designed to detect DBMS logic bugs in data
operations. EDC constructs equivalent data by computing the results of operation expressions
from the base table to derive a transformed table. EDC executes queries on both tables and
identifies discrepancies, indicating potential bugs.

o We implemented EDC and used it to test seven widely-used DBMSs. It uncovered 54 previously
unknown bugs, with 39 of these bugs confirmed by the developers.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:4 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

2 BACKGROUND AND MOTIVATION
2.1 Data Types and Operations

Data Types. In DBMSs, data types define the kind of data that can be stored in a database column,
ensuring consistency, precision, and efficiency in data storage and retrieval [14]. They can be
categorized into four major groups: (1) Numeric types, which encompass integers, floating-point
numbers, etc., are essential for arithmetic operations and numerical computations; (2) String types,
which store text-based and binary data, include fixed-length types (e.g., CHAR), variable-length
types (e.g., VARCHAR), and binary types (e.g., BLOB) for handling large or unstructured data such as
multimedia files; (3) Date types, which manage temporal data such as DATE, TIME, and TIMESTAMP,
enable precise tracking and manipulation of time-based information, making them indispensable
for scheduling, event logging, and analytics; and (4) Custom types, which extend the functionality
of DBMS by supporting specialized formats like JSON data types and spatial data types(e.g., POINT).

Data Operation. DBMSs offer a variety of operators and functions; in this paper, we collectively
refer to them as data operations. These operations enhance the capability of DBMSs to execute
complex SQL queries and facilitate in-depth data analysis [1, 3]. We focus on the following four
categories of operations: (1) Arithmetic operations, which perform element-wise computations on
numeric columns, such as addition (+) and subtraction (-), are essential for numerical transforma-
tions; (2) Function operations, which leverage built-in or user-defined functions to process data,
such as string manipulations (e.g., CONCAT) and date-time calculations (e.g., DATE_ADD), enhance
the versatility of SQL queries; (3) Predicate operations, which evaluate conditions or comparisons
between columns, returning boolean results, such as comparisons (>, <, =), null checks (IS NULL),
and set-based operations (IN, BETWEEN), are critical for filtering; and (4) Aggregate operations,
which summarize data across multiple rows, producing grouped or single-value results through
functions like SUM, AVG, and MAX.

The diversity of data types and operations serves as the cornerstone of a DBMS’s ability to support
a broad spectrum of functionalities. By leveraging this combination, DBMSs effectively address
diverse application requirements while ensuring performance, reliability, and user-friendliness.

2.2 Limitations of Existing Approaches

Several approaches have been proposed to detect logic bugs in DBMSs [27, 36-38, 44, 45], many of
which operate at the query level and rely on various strategies to identify inconsistencies in query
results. Specifically, some approaches split or transform queries to expose discrepancies in the
results (e.g., TLP [37], NoREC [36]), while others construct logically crafted SQL queries designed
to return specific results in a controlled manner (e.g., PQS [38], DQE [44]). While query-level
strategies have proven effective in many cases, their focus on high-level semantics or syntactic
transformations means they may not specifically target the types of subtle bugs that can emerge
from complex data operations or type interactions. Additionally, some techniques (e.g., EET [27])
apply rule-based expression rewriting, while others, such as Radar [45] focus on detecting metadata-
related logic bugs by comparing results between a database with metadata constraints and a raw
database. While these methods do not rely directly on data semantics, they operate at a different
level of abstraction and are not primarily intended to capture data relationships.

Notably, the bug illustrated in Figure 1 triggered by a query containing WHERE CONCAT(al, a2) is
uniquely detected by our approach. EET operates at the syntactic level, and while its rule-based
expression rewrites provide valuable insights, they may not fully capture deeper data relationships.
NoREC aims to reveal bugs by transforming query semantics, but its approach is primarily focused
on a specific pattern of predicate rewriting, which may limit its coverage. Radar, which emphasizes
metadata constraints, offers useful perspectives but does not manipulate data expressions directly,

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:5

potentially missing deeper inconsistencies in data computation. Taken together, these approaches do
not explicitly model equivalence across data types and operations, which may make it challenging
to detect certain types of data-level logic bugs.

2.3 Definitions of Data Equivalence

To illustrate our idea, we first present formal definitions of the relevant concepts, based on relational
algebra expressions [33]. Table 1 summarizes the used relational algebra notation.

Table 1. Relational algebra notation.

Symbol Meaning

I1 Projection: selects a subset of attributes from a relation
p Renaming: assigns new names to a relation or its attributes
G Grouping aggregation: computes over grouped tuples

Data Equivalence. Let T be a table with columns Aj, As, ..., A,, and let op be a data operation
(either a row-wise computation or a group-wise aggregation). We define a transformed table T’ to
be data-equivalent to T under operation op, denoted as:

T ZT
if and only if one of the following holds:

e Row-wise Equivalence. If op is a row-wise operation applied to a subset of columns in T,
then:

This means we first project columns Ag, . .., A, and the computed result of op(Ay,... ,Ap),
then rename the result to obtain table T/ with a new result column R.

e Group-wise Equivalence. If op is a group-wise aggregation over group-by attributes
Ags ..., Ay, then:

T" = p1/(Ry...RaR) (Aq,...,Angop(Al,...,Ap)(T))

Here, we group T by attributes Ay, ..., Ap, apply the aggregation op to Ay, ..., A, and then
rename the result table and attributes accordingly.

In both cases, T’ is derived from T using a deterministic operation op, and Z captures the
equivalence between original and transformed data under that operation. We refer to T as the base
table, T as the transformed table, and op(As, ..., A,) as the equal operation expression.

Basic Idea of EDC. Let T be the base table and T’ be the transformed table such that:

TET
Let Q be a SQL query over T that includes occurrences of op(Ay, ..., A,). We define a rewritten
query Q’ by replacing each such expression with the precomputed column R from T":
Q" =0Q(op(Ay,...,Ay)) — R)
This guarantees the equivalence of query results:
’ Op ’ ’
T"=T = Q(T) =Q(T)

Our insight is that replacing data operation expressions (i.e., op(Ay, ..., A,)) with their

precomputed results (i.e., R) in SQL queries should produce identical outputs. This principle

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:6 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

ensures that the semantics of a query remain unchanged, regardless of whether the expression
is computed dynamically or retrieved from a precomputed column. By leveraging this, we can
systematically generate equivalent SQL queries: one relying on operation expressions and the
other using precomputed results. These pairs enable rigorous testing of DBMS behaviors, revealing
inconsistencies. Compared to existing techniques, this form of data equivalence checking provides
an orthogonal and complementary perspective on testing. Indeed, this approach led to the discovery
of the logic bug shown in Figure 1, where substituting a CONCAT expression with its precomputed
value exposed a violation of expected equivalence.

@ Equivalent Data Construction

! (- 1
! ! 1
1 1! e p—— - 1
o Tahle <fe hle T SELECT varSamp(al)FROM Tbase '
! Base Table Tbase TransformedTable Ttrans ! !
. e prvarSamp 11| GROUPBY a2 i fnamy 1 — -
N— ! al 2 ’) | ! [HAVING varSamp(al) |= -8.032¢+37; | | o
| ; r r2 —> Qe T TTC
e b — int16 uint32 float64 uint32 : 1 BaseQuery _______ \
! =Y D 1| SELECT r FROM Tirans ! ')
Random Types | 2913 | 7583471 > nan 7583471 | 11| WHERE s - .032037: A Potential Bugs
and Operations 1 | 1 il i S [\
' h Transformed Query

Fig. 2. The overview of EDC. It consists of two stages: Equivalent Data Construction (Section 3.2) and
Operation-Oriented Query Generation (Section 3.3). In the first stage, a base table is generated as input for an
operation, and the results are computed and stored in a derived transformed table, ensuring data equivalence
on the operation. In the second stage, random queries on the base table are transformed into queries on the
transformed table, with result inconsistencies revealing bugs.

3 DESIGN OF EDC

We propose Equivalent Data Construction (EDC), a novel technique designed to detect logic bugs
in DBMSs that stem from data operation implementations. The core idea of EDC is that for data
operation expressions in SQL queries, replacing them with precomputed results should yield
identical query results. If executing the original query and its transformed counterpart yields
different results, EDC identifies this discrepancy as a potential logic bug in the underlying DBMS.

3.1 Overview of EDC

Figure 2 provides an overview of EDC, using the bug shown in Figure 9 as a running example
to illustrate its detection workflow. The process is structured into two stages: equivalent data
construction (Section 3.2), and operation-oriented query generation (Section 3.3). In stage @D, we
randomly select a data operation (e.g., varSamp) and some data types (e.g., int16 and int32) and
generate a base table based on the selected operation and types. Next, we insert random data for
the base table and compute the results of the equal operation expression based on the operation,
storing the results in a newly derived transformed table. For example, as shown in Figure 2, the
operation varSamp is applied to al, grouped by a2 in the base table, and the result value (e.g., NaN
for the group where a2 equals 7583471) is stored in the transformed table 7.

In stage (2, semantically equivalent SQL queries are generated to detect potential bugs in the
DBMS data operations handling by validating the data equivalence relationship between the base
table and the transformed table. First, a random query is constructed on the base table by referencing
the equal operation expression varSamp(al). Then, it is transformed into a query by replacing all
occurrences of the equal operation expression with the result column r. If the equivalent expression
forms a condition within a HAVING clause, this condition is moved to the WHERE clause in the
transformed query. Finally, to identify logic bugs in the DBMS, the results of each query are
checked for consistency. If the results are different, we consider the test case to find a potential bug
related to the data operation.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:7

3.2 Equivalent Data Construction

In this section, we discuss how to construct the base table, denoted as Tj4s., and the transformed
table, denoted as T;,4ps, While ensuring data equivalence between them.

3.2.1 Base Table Generation. We begin by selecting a random data operation op (e.g., +, CONCAT,
AVG), collected from the list of supported operations detailed in the target DBMS documentation.
We explicitly exclude operations known to produce non-deterministic results, such as ANY_VALUE.
These operations may return varying outputs, and thus are unsuitable for detecting logic bugs
based on consistent data behavior. Next, we construct a base table Tj,s. With a configurable number
of columns, each assigned a randomly selected data type supported by the DBMS. Before populating
the table, we perform a compatibility check to ensure that the target operation op is syntactically
and semantically valid for the selected column types. This validation is conducted by issuing a
lightweight SELECT query that applies op to the candidate column types. If the query executes
successfully without producing type errors or semantic violations, the type-operation combination
is deemed valid. Conversely, if the DBMS returns an error indicating type incompatibility, the
current configuration is discarded, and a new combination of data types and an operation is
generated. This process is repeated until a valid and executable setup is identified.

Once the compatibility of the type-operation combination is confirmed, we proceed to populate
Tpase With a batch of randomly generated data. This data serves as the foundation for further
processing, including the construction of its transformed table T}, ,,s and the evaluation of data
equivalence in subsequent query transformations. To ensure both general coverage and bug-
triggering potential, EDC employs a structured data generation strategy that accounts for a wide
range of type-specific behaviors and edge cases. For each column, values are generated in accordance
with the type’s constraints to ensure validity. This prevents common runtime errors such as INSERT
failures due to out-of-range or malformed values. To increase the likelihood of exposing type-related
bugs, EDC introduces some cross-type data patterns, where values from one logical domain are
deliberately inserted into fields of a different type. For instance, a text column may contain numeric-
looking strings (e.g., "123", "-45.6"), allowing tests to exercise implicit type coercion during
operations such as addition and concatenation. Similarly, for unsigned integer fields, EDC may
insert negative values or values exceeding the type’s precision, triggering truncation or overflow
behavior during query execution. These hybrid and invalid inputs help uncover inconsistencies in
how DBMSs internally handle type-related operations. In addition, EDC emphasizes the generation
of boundary and edge-case values, including extremely large or small numbers, empty strings, and
mixed-case text, which are known to stress the expression evaluation logic.

3.2.2 Transformed Table Generation. After the data generation for the base table T4, the cor-
responding results are computed based on the selected equal operation and stored in a derived
transformed table (i.e., T;rans). Figure 3 illustrates the process of transformed table generation.
First, we use the target DBMS’s type inference capabilities to determine the type of the equal
operation expression (OpExpr, e.g., CONCAT (a1, a2)). The inferred type, obtained from the system
table, is essential for constructing the operation-transformed table to store the computed results. To
obtain this type, we begin by creating a view over the base table that projects the equal operation
expression. We then query the system catalog to retrieve the inferred type of the expression within
this view. Finally, using the retrieved type information, we construct the transformed table T;qns
with the query CREATE TABLE Tj.4ns (r type). For DBMSs that support the CREATE TABLE AS
syntax (e.g., MySQL), the process can be further streamlined. In such cases, the transformed table
can be created using the statement CREATE TABLE T;rqns AS (SELECT (OpExpr) AS r FROM

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:8 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

Tpase)- This simplifies the workflow by combining table creation and data computation. If an error
occurs during table generation, EDC skips the current test case and continues to the next.

1 @ Create view on the base table

al a2 1 using the equal operation expression
varchar text :
0.6782° 979° —> CONCAT
(al, a2)
Il CONCAT

with data type and insert data expression from the system table

r CIC] sececr
fext < CICJ<e pata TyPpE

I
0.6782979° l 11 FROMQ

1 System Table

|

I

I

|

I

! 1
I 1
I

1 ® Derive the transformed table : @ Get the data type of the
I 1
1 1
1 1
|

|

1

|

|

Fig. 3. The process of transformed table generation.

After constructing the transformed table, we compute and insert data into it by evaluating the
selected operation expression over the base table, ensuring data equivalence between the two tables.
The specific process depends on whether the selected expression is non-aggregate or aggregate:

(1) Non-Aggregate Operations: For non-aggregate operations, such as +, CONCAT, or NULLIF,
the operation is applied row by row on the selected columns in Tj,.. For example, the operation
expression CONCAT (a1, a2) in T4, generates a single column r in T;,4ps, as shown in Figure 3. The
data is then inserted into T;,qns using a direct query INSERT INTO Tj,4ns (SELECT CONCAT(al, a2)
AS r FROM Tpase). To increase query diversity, Tpqse may include additional columns that are
not involved in the tested operation expression. These columns are copied unchanged into T;qns,
preserving structural consistency between the two tables while maintaining the correctness of
the equivalence transformation. These additional columns enable richer query construction by
participating in predicates, projections, or function arguments. Such interactions increase the
syntactic and semantic complexity of generated queries, which can expose subtle logic bugs. For
example, as shown in Figure 7, TiDB exhibited a failure when a JSON column (a2, an additional
column) was compared with a boolean expression (a1 IS NULL) in a WHERE clause, illustrating how
these auxiliary columns can contribute to bug detection.

(2) Aggregate Operations: For aggregate operations such as SUM or AVG, the process involves
grouping data in Tp,s. based on one or more grouping columns. The aggregate function is then
applied within each group to compute the results. The transformed table T4,5 stores both the
grouping columns and the corresponding aggregated values. For example, the following query
populates T;,4,s with two columns r2 and r: INSERT INTO Ty.qns (SELECT a2 AS r2, SUM(al)
AS r FROM Tpu5e GROUP BY a2). To ensure that the aggregated results preserve data equivalence,
it is important that Ty, contains only the grouping columns and those involved in the aggregation.
This contrasts with non-aggregate operations, where unrelated columns can be retained without
affecting correctness.

3.3 Operation-Oriented Query Generation

After constructing the base table Ty 45, and the transformed table T;yq4ns, EDC proceeds to generate
a batch of SELECT query pairs that operate on the two tables and are expected to yield equiva-
lent results. The overall process is described in Algorithm 1, with expression generation details

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:9

elaborated in Algorithm 2. The purpose of Algorithm 1 is to construct a query pair (Qpgses Qtrans)
that is logically equivalent. It first constructs a base query Qpgse over Tpqse by applying randomly
generated expressions to its columns (Lines 1-9). It then transforms Qpgse into Qrans by replacing
sub-expressions that correspond to previously materialized operations with their precomputed
results in T;rqns (Line 11). The purpose of Algorithm 2 is to synthesize valid expressions for use
within Algorithm 1. It incrementally constructs valid expressions by selecting node types, such as
constants, columns, and operators, and combining them according to syntactic and type constraints.

Algorithm 1: Operation-Oriented Queries Generation

Input: Tables Tpyse, Tirans, Selected Data Operation op

Output: Query Opase, Qtrans
1 OpExpr « composeCol(Tpqs..InputCols, op);

2 Qpase < Select(Tpase);

3 if op is aggregate then

4 Qpase-addWhere(genExpr(Tpase.GroupCols, 0));
5 Qbase-addGroupBy(Tpgse.GroupCols);

6 Qpase-addHaving(genExpr({OpExpr},0));

7 else

8 Qbpase-addWhere(genExpr ({OpExpr} U

9 Tpase-OtherCols, 0));

10 end
11 Qyrans < Transform Qpgse to query on Typqps via defined rules;

12 return Qpgse, Orrans

Specifically, Algorithm 1 begins by composing the target operation expression OpExpr from
the selected operation op and its input columns (Line 1). This expression (e.g. CONCAT (a1, a2)) is
treated as a conceptual column, as it represents a unit of computation whose result is materialized
in Tyrqns. Treating OpExpr as a column also facilitates query transformation, where it is directly
replaced by its precomputed column during the construction of Qqns. Then, a base query Qpgse
is initialized as a simple SELECT over the base table Ty, (Line 2). The rest of the query structure
depends on whether the selected operation is aggregate or non-aggregate: For aggregate operations,
a WHERE clause is first added using a randomly generated predicate over the grouping columns
(Tpase-GroupCols, Line 4). A GROUP BY clause is then added using these same columns (Line 5),
followed by a HAVING clause that filters based on a predicate over the composed OpExpr (Line 6).
For non-aggregate operations, a single WHERE clause is added based on a predicate involving both
OpExpr and the unrelated columns in Tj4s..OtherCols (Lines 8-9).

The next step in Algorithm 1 is query transformation (Line 11), where the transformed query
Q¢rans 1s derived from the base query Qp,se by rewriting expressions according to a set of predefined
rules summarized in Table 2. For non-aggregate operations, each occurrence of OpExpr (ie.,
0p(Ay,...,Ap))in Qpgse is replaced with the corresponding precomputed result column R from the
transformed table T;qns. For aggregate operations, the transformation replaces both the aggregate
expression and the GROUP BY clause with their equivalent columns in T;y4ps. Specifically, the
aggregate is replaced with column R, and each grouping attribute A, ..., A, is mapped to columns
Ry ..., Ry. EDC applies WHERE filters only to columns in the GROUP BY clause. This is because, after
aggregation, the raw values of non-grouped columns are no longer available in the transformed
table, making post-aggregation filtering on those columns infeasible. For example, in SELECT-
GROUP_CONCAT (a, b) FROM t GROUP BY c, applying a filter like WHERE a > 1@ becomes infeasible

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:10 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

on the equivalent table because columns a and b have already been aggregated and their raw values
are unavailable for comparison. Additionally, any HAVING clause that references the aggregate
expression is rewritten as a WHERE clause over R. Finally, by executing queries and comparing the
results of Qpgse and Qyrans, any discrepancies indicate potential logic bugs in the DBMS, such as
issues with expression evaluation, type conversion, aggregate computations, or query optimizations.

Lines 4-6 and 8 of Algorithm 1 invoke the expression generation procedure genExpr, which is
responsible for constructing randomized SQL predicates over the relevant columns. This procedure
is detailed in Algorithm 2. It takes as input a set of columns and two depth parameters: CurDepth,
the current depth of the expression tree, and MaxDepth, a fixed configuration constant that limits
recursion and prevents overly deep expression trees. At each invocation, the algorithm first initial-
izes a candidate set of node types, starting with leaf-level types: constants and column references
(i.e., CONST and COLUMN, Line 2). If the current depth is less than the maximum allowed, internal
node types, such as logical and comparison types, are also added to the candidate set (Lines 3-5).
These node types are collected from DBMS documentation. A node type is then randomly selected
from the candidate set. If the selected type is a leaf node, the algorithm calls randomValueNode,
which returns either a constant value (e.g., 42, ‘abc’) or a randomly selected column from the
input set, depending on the node type (Lines 7-8). For non-leaf nodes, a new operator node is
initialized, and its required number of children (e.g., two for AND or +) is recursively generated by
invoking genExpr with increased depth (Lines 10-13).

Algorithm 2: Expression Generation

Input: Columns Cols, Current depth of query CurDepth, and Max depth MaxDepth
Output: Generated Expression Node
1 Function genExpr(Cols, CurDepth):

2 NodeTypes «— {CONST, COLUMN};

3 if Depth < MaxDepth then

4 NodeTypes « NodeTypes U {AND_EXPR, OR_EXPR, ...}, which enabling logical

composition of expression nodes;

5 end

6 Type « random(NodeTypes);

7 | if Type € {CONST, COLUMN} then

8 | Node « randomValueNode(Cols, Type)

9 else

10 Node < initNode(Type);

11 for i from 1 to Node.ChildNum

12 Node.addChild(genExpr(Cols, CurDepth + 1));
13 end

14 return Node

4 IMPLEMENTATION

We implement EDC in Python, supporting seven DBMSs: MySQL, MariaDB, Percona, PostgreSQL,
TiDB, OceanBase, and ClickHouse. The structure and details of the codebase are available on the
website of EDC [6]. To prepare for testing, we extracted supported data types and operations from
the official documentation [9, 11] and built-in test cases. Specifically, we collected 381, 387, 381,
1351, 287, 382, and 953 operations from MySQL, MariaDB, Percona, PostgreSQL, TiDB, OceanBase,

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:11

Table 2. The basic rules for transforming queries

Type Data Equivalence Relationship Query Transformation Rule
Non- T’ = pr/(ag,.. AR WAg, . An op(Ay,...ap) (T)) SELECT expr(Ag, ..., An, op(Ay, ..., Ap)) FROM Ty
Aggregate

‘WHERE expr(Aq Ap, op(Ay, ..., Ap)) —
SELECT expr(Ag, ..., Apn, R) FROM T},ans
‘WHERE expr(Aq AnR)

Aggregate T’ = pr(ry...Ro) Agun Gop(ar,..p) (T)) SELECT expr(Ag,.... An, 0p(A1, .., Ap)) FROM Trqse
WHERE expr(Ag, . . -, Arn) GROUP BY Ags-es Apn
HAVING expr(op(Ay, ..., Ap)) —
SELECT expr(Ry, - - ., Rn, R) FROM Tyrans
WHERE expr(Ry;, . . ., R;;) AND expr(R)

The notation expr(col) represents an expression generated using col as a basic node in the expression tree.

and ClickHouse, respectively, covering 36 distinct data types. The implementation of EDC generally
comprises two steps:

Test Case Generation. In the equivalent data construction stage, we generate random diverse
values, including boundary cases, null values, and mixed data, to explore potential edge cases and
maximize test coverage. Boundary cases are specifically selected based on DBMS documentation [7].
For numeric and date types, we use minimum/maximum allowed values (e.g., TINYINT ranges
from -128 to 127), while for string and custom types, we include edge cases like empty strings and
NULL values. The maximum number of rows inserted into the table is configurable, with a default
setting of 100 rows. The number of columns in the table is also configurable, with a maximum
of 5 input columns for the selected data operations in our implementation. For non-aggregate
operations, up to 3 additional unrelated columns are included to increase query complexity. For
aggregate operations, up to 3 grouping columns are added to support GROUP BY operations. After
the equivalent data construction stage, no further DML operations are performed on the original
or derived transformed tables to ensure data consistency throughout the testing process.

In the operation-oriented query generation stage, we generate SELECT query pairs for the base
table and the transformed table. The maximum number of SELECT queries generated per test is
configurable, with a default of 1,000. We generate and transform queries by leveraging the Abstract
Syntax Tree (AST) representation. During iterative traversal of the AST, tree nodes corresponding
to the equal operation expression are identified and replaced with the equivalent column node
from the derived transformed table. This transformation ensures that the semantics of the queries
remain consistent across both tables.

Bug Identification. EDC identifies logic bugs by executing the base and equivalent queries on
the original and transformed tables and comparing results. If any inconsistency is detected during
execution, the test is terminated early to focus on analyzing the discrepancy. Before comparison,
EDC sorts the query results to ensure reliability, including sorting list objects within individual
rows. When both queries return error messages, we ignore these cases in our analysis as they do
not indicate logic bugs. This decision was based on initial feedback from developers who indicated
that such outcomes were considered consistent behavior since both queries failed. When the results
of the two queries differ, EDC flags the case as a potential bug. These discrepancies are logged with
detailed information, including the DBMS information, the specific queries executed, the results
obtained, and the nature of the inconsistency.

5 EVALUATION

In this section, we evaluate the effectiveness of EDC in detecting logic bugs. We begin by presenting
previously unknown logic bugs discovered by EDC and highlighting their severity. Next, we analyze

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:12 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

the distribution of bugs across data types and data operations to show EDC’s ability to handle diverse
scenarios, from simple to complex types and operations. We also examine key statistics, including
the distribution of test cases, column counts, and the ratio of executed queries to unique bugs
identified. In addition, we include case studies to further highlight EDC’s effectiveness, showing
how it can enhance existing testing methods by revealing additional bugs. Finally, we compare EDC
with other related DBMS testing techniques to demonstrate how data equivalence can complement
existing approaches.

5.1 Evaluation Setup

Tested DBMSs. To evaluate the generality and efficiency of EDC, we select seven popular open-
source DBMSs, namely MySQL [10, 49], MariaDB [8, 17], Percona [4], PostgreSQL [13], TiDB [24, 34],
OceanBase [12], and ClickHouse [5], which are widely used in industry. Table 3 shows the specific
versions of the tested DBMSs for the experiments. The type in Table 3 follows the prior work [45]
and established classifications [25]. Specifically, we applied EDC to MySQL 9.0.1, MariaDB 11.4.3,
Percona 8.4.2, PostgreSQL 16.1, TiDB 8.2, OceanBase 4.2.1, and ClickHouse 24.9. These DBMSs
have been extensively tested by many existing approaches [21, 27, 29, 30, 38, 50]. However, existing
tools have recently identified significantly fewer bugs in these DBMSs. Consequently, discovering
new bugs in these DBMSs has become highly challenging.

Table 3. Target DBMSs: version, complexity, popularity, and diversity overview.

DBMS Version LOC GitHub Stars Type
MySQL 9.0.1 6.2M 10.8k Relational
MariaDB 1143 23M 5.6k Relational
Percona 8.4.2 5.0M 1.2k Relational
PostgreSQL 16.1 1.9M 18k Relational
TiDB 82 15M 36k NewSQL
OceanBase 4.2.1 7.5M 8.5k Distributed
ClickHouse 24.9.1 22M 36k Analytical

Experimental Setup. We perform the experiments on a machine running 64-bit Ubuntu 20.04
with 128 cores (AMD EPYC 7742 Processor @ 2.25 GHz) and 504 GiB of main memory. To detect
real-world logic bugs, we perform testing of EDC on all seven DBMSs continuously. For quantitative
comparisons, all DBMSs tested are run in Docker containers that can be downloaded from their
website with 5 CPU cores and 32 GiB of main memory for 24 hours.

5.2 Detected Logic Bugs

Bug Statistics. Table 4 shows the statistics of logic bugs reported by EDC for each DBMS. EDC
generated a total of 24,132 valid type-operation combinations for testing. Using these combinations,
EDC discovered 54 logic bugs across seven widely used and well-tested DBMSs, specifically 13,
10, 11, 2, 5, 6, and 7 logic bugs in MySQL, MariaDB, Percona, PostgreSQL, TiDB, OceanBase, and
ClickHouse, respectively. Among them, 39 anomalies have been confirmed as previously unknown
bugs. Additionally, 4 bugs are considered duplicates of existing ones, and 11 anomalies remain under
investigation due to their complexity. To distinguish unique bugs, EDC applies a post-analysis de-
duplication process based on query structure, data type, and operation patterns. Final confirmation
is conducted in collaboration with DBMS developers when necessary. Further details on the de-
duplication strategy are provided in Section 6. The results reflect that data behavior related logic

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:13

Table 4. Number and status of previously unknown bugs detected by EDC

DBMS Reported Confirmed Duplicate Investigating
MySQL 13 11 2 0
MariaDB 10 3 2 5
Percona 11 11 0 0
PostgreSQL 2 1 0 1
TiDB 5 0 0
OceanBase 6 6 0 0
ClickHouse 7 2 0 5
Total 54 39 4 11

bugs are prevalent in these popular DBMSs. With the equivalent data construction approach, EDC
can trigger various data operations behaviors and detect these bugs.

Bug Severity. We analyze the severity of the logic bugs reported across various DBMSs, highlight-
ing their substantial impact on system reliability and correctness. These bugs have a wide impact
because they involve fundamental data operations that could be invoked by various higher-level
expressions in DBMSs. Among the reported bugs, we found that 12 bugs were classified as critical
or major due to their potential to compromise query results or system stability. Specifically, type
conversion errors and precision loss during arithmetic operations were often marked as important
by developers, as they directly affect data integrity and query accuracy.

Developers of various DBMSs acknowledged the practical value of identifying these bugs. For
example, TiDB developers have actively inquired about our approach and praised its effectiveness,
and MariaDB developers described our findings as counterintuitive, helping them uncover more
issues related to functions and data types, recognizing the operational value of EDC beyond
academic novelty. These findings not only resolved immediate issues but also contributed to
improving the overall robustness of the DBMSs.

5.3 Comprehensive Bug Analysis

We analyzed the 54 bugs identified to highlight the data types and operations that EDC can
effectively cover. This analysis demonstrates the broad capability of EDC in detecting issues across
diverse data types and its effectiveness in handling various data operations. Then, we further
investigate the characteristics of test cases that are more likely to expose logic bugs, including their
data types and query structural features. Through this comprehensive analysis, we aim to provide
insights into both EDC’s detection capabilities and potential strategies for future testing.

Bug Distribution in Data Types. We investigated the bugs detected by EDC and analyzed the
primary data types involved. The results are presented in Table 5. For each bug, we examine the
query that triggers inconsistent behavior to identify the related data types. When a query contains
interactions between multiple data types, all main participating types are included in our analysis.
As shown, 4 data type categories (i.e., numeric, string, date, and custom type) are all involved in
the 54 bugs identified. Specifically, 31 bugs are related to numeric types, 9 to string types, 13 to
date types, and 10 to custom types.

Numeric type bugs dominate, making up 57.4% of the total, due to implicit conversions and issues
with unsigned and floating-point types. Date type bugs account for 24.1% of the total, primarily
from improper handling of date functions and comparisons between dates and numeric types. String
type bugs, which represent 16.7%, often occur during conversions from strings to numeric types.
3 of custom-type bugs are related to JSON, particularly in JSON-related functions and predicates.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:14 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

Table 5. Bug distribution across different data types.

DBMS Numeric String Date Custom
MySQL 6 2 5 3
MariaDB 5 4 0 3
Percona 5 1 4 2
PostgreSQL 2 0 1 0
TiDB 4 1 1 1
OceanBase 3 1 1 1
ClickHouse 6 0 1 0
Total 31 9 13 10

Table 6. Bug distribution across different data operations.

DBMS Arithmetic Function Predicate Aggregate
MySOL 1 10 1 1
MariaDB 2 8 0 0
Percona 2 8 1 0
PostgreSQL 0 1 0 1
TiDB 0 3 1 1
OceanBase 1 3 2 0
ClickHouse 0 4 1 2
Total 6 37 6 5

The remaining 7 bugs are associated with spatial types, primarily caused by incorrect handling of
geographic data in functions and conditional evaluations.

Bug Distribution in Data Operations. Table 6 lists the data operation types (i.e., arithmetic,
function, predicate, and aggregate operation) in the 54 test cases triggering the logic bugs. Among
the 54 identified bugs, 37 were caused by function operations, 6 by arithmetic operations, 6 by
predicate operations, and 5 by aggregate operations. Function-related bugs appear in all seven
DBMSs and represent the largest category in our findings. This is likely because functions are
the most diverse operation type, supporting a wide range of operations across various column
data types. The majority of predicate-related bugs, which account for 6 cases, are likely caused
by improper handling of logical expressions or conditional evaluations, such as those in WHERE
clauses. Arithmetic-related bugs, also accounting for 6 cases, typically stem from incorrect type
conversions or edge cases during mathematical evaluations. They show that even basic operations
may have implementation errors and can fail under specific conditions. Aggregate-related bugs
account for 4 cases. These bugs primarily stem from two sources: incorrect handling of HAVING
conditions and improper processing of empty results during aggregation operations.

Test Case Characteristics and Bug-Prone Patterns. To further evaluate our testing approach,
we first provide a high-level overview of the test case corpus and its relationship to bug discovery.
As shown in Table 7, we evaluated a total of 24,132 test cases, each generating over 100 queries,
resulting in approximately 2.41 million executed queries. These efforts led to the discovery of 54
unique logic bugs, yielding an average of 44,689 queries (or 447 test cases) per unique bug. We then
analyzed the composition of test cases by data type. The overall distribution consisted of numeric
(8,236 cases, 34%), string (10,348 cases, 43%), date (2,801 cases, 12%), and custom types (2,747 cases,
11%). Interestingly, the bug distribution across these types, shown in Table 5, does not mirror their

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:15

Table 7. Distribution of test cases by data type.

Type Numeric String Date Custom
Test Cases(%) 8,236 (34%) 10,348 (43%) 2,801 (12%) 2,747 (11%)

representation in the test set. For example, although numeric types accounted for only 34% of the
test cases, they were responsible for 57.4% of the detected bugs. This discrepancy may suggest
that numeric inputs may be more sensitive to subtle logic issues. In addition to data types, we
investigated the structural complexity of the queries that triggered bugs, focusing on the number
of columns involved. Based on the minimal form of queries that revealed each bug, we found that
most were relatively simple in structure: 2 bugs were triggered by single-column queries, 18 by
two-column queries, 30 by three-column queries, and 4 by four-column queries. While queries
with five or more columns were included in the test set, the queries that ultimately triggered bugs
involved fewer columns.

5.4 Selected Bugs Found by EDC

To better illustrate the categories of these bugs, we present a selection of confirmed examples
showcasing the diverse and complex issues uncovered by EDC. Specifically, we selected six rep-
resentative bugs that span different data types and operation types across the seven DBMSs. To
emphasize the core issues, the examples have been simplified to isolate the root cause. Instead of
presenting original test cases, we distilled the queries and data to their minimal form, removing
unrelated elements to eliminate unnecessary complexity while preserving the essence of each bug.

Case 1: Inconsistent numeric handling in MySQL function operation COALESCE. Figure 4 demon-
strates an inconsistency in how MySQL evaluates the result of the COALESCE function when handling
numeric type columns. The absence of a WHERE clause in this case is due to simplification during
test reduction, which resulted in the predicate being removed. The base table Tj,. contains two
BIT columns, al and a2, where al is set to NULL and a2 is set to 1. The transformed table T}, 4, is
created by applying the COALESCE function to the two columns, resulting in an equal column .
When querying the base table directly, the result of COALESCE(al, a2) is represented as @x31, which
is the ASCII encoding of the numeric value 1. However, when querying the derived transformed
table Tirans, (R1.M1)where the result is stored as r, the output is correctly interpreted as numeric 1.

-— Set up the base table

CREATE TABLE Tbase (al BIT, a2 BIT);

INSERT INTO Tbase VALUES (NULL, 1);

-—- Set up the transformed table

CREATE TABLE Ttrans AS SELECT COALESCE(al, a2) AS ¥ FROM Ttrans;
-— Base query, returns {0x31}

SELECT COALESCE(al, a2) FROM Tbase;

-—- Transformed query, returns {1}
-~

SELECT r FROM Ttrans; n

Fig. 4. Inconsistent numeric handling in MySQL function operation COALESCE.

This inconsistency arises from how MySQL handles BIT data types in different contexts. In the
base query, MySQL treats the result of COALESCE as a binary form of string. This is likely because
BIT values may be implicitly encoded as strings when returned as the output of the function
COALESCE. This results in the hexadecimal output @x31, which is the binary representation of the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:16 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

number 1 in ASCIL In the derived transformed table, MySQL stores the result as a numeric value,
which ensures the transformed query returns the correct numeric value.

Case 2: Inconsistent evaluation of DATE_ADD function in MySQL with date type. Figure 5 illustrates
a discrepancy in MySQL’s evaluation of DATE_ADD when used dynamically in a BETWEEN clause.
In this case, the base table Tj, . contains two columns: al as DATETIME and a2 as INT. Then, the
base query dynamically evaluates the result of DATE_ADD within the BETWEEN clause to compare
it against a range. Despite the operation being within the specified range, MySQL fails to return
any rows in the base query. In contrast, when the result is precomputed and stored as column r
in the derived transformed table T;.qps, the transformed query successfully evaluates the range
condition and returns the correct result. The root cause of this inconsistency lies in how MySQL
handles dynamic function evaluations in conditions like BETWEEN. When DATE_ADD is used within a
BETWEEN clause, MySQL struggles to evaluate it correctly when comparing it against constants. This
leads to no rows being returned, even though the result should fall within the range. In contrast,
when the DATE_ADD result is stored in the derived transformed table, MySQL processes it correctly.

-— Set up the base table
CREATE TABLE Tbase (al DATETIME, a2 INT);
INSERT INTO Tpase VALUES ('6722-01-03 04:01:57', '3525");

-— Set up the transformed table

CREATE TABLE Ttrans AS SELECT DATE ADD(al, INTERVAL a2 DAY) ASPEIFROM Tbase;
-- Base query,returns {}

SELECT DATE ADD(al, INTERVAL a2 DAY) FROM Tbase a
WHERE DATE ADD(al, INTERVAL a2 DAY) “
BETWEEN -3.18812e+38 AND '2935-07-28 18:13:52'";

-- Transformed query, returns {6731-08-29 04:01:57}

SELECT r FROM Ttrans WHERE r
BETWEEN -3.18812e+38 AND '2935-07-28 18:13:52"';

Fig. 5. Inconsistent evaluation of DATE_ADD function in MySQL with date type.

Case 3: Inconsistent handling in Percona ST_Collect function with spatial types. Figure 6 illustrates
an inconsistency in Percona’s evaluation of the spatial function ST_Collect when used within
a WHERE clause. In this case, the base table Tj4s. contains a single column al of type POLYGON,
populated with a distinct polygon. The base query applies ST_Collect(c@) directly within a
subquery in the WHERE clause and checks for membership of a given LINESTRING using the IN
operator. Then, this query returns a single row with NULL as the result of the SELECT clause. In
contrast, a semantically equivalent query is executed on T;4,s. When the same LINESTRING is tested
for membership against this precomputed value, the query returns an empty result set, with no rows
matched. The root cause of this inconsistency lies in how Percona evaluates spatial aggregation
functions like ST_Collect in dynamic versus materialized contexts. When the function is used
directly in a query over the base table, the internal handling may result in ambiguous evaluation,
causing the output to be NULL. However, once the result is materialized into a new table, the
evaluation context changes, leading to a complete and consistent representation of the geometry
collection, resulting in no match being found at all.

Case 4: Inconsistent handling of JSON data type and predicate operation in TiDB. Figure 7 involves
an inconsistency in TiDB when evaluating comparisons between JSON data and boolean expressions
in a query. The base table Ty, contains three columns: al of type DOUBLE, a2 of type JSON, and
a3 of type BIGINT. The derived transformed table T;,,,s contains a column r generated from the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:17

-—- Set up the base table

CREATE TABLE Tbase (al POLYGON) ;

INSERT INTO Tbase VALUES (ST GeomFromText (

'POLYGON (61.85 74.8, 78.08 26.70, 96.77 77.69)"));

-- Set up the transformed table

CREATE TABLE Ttrans AS SELECT ST Collect(al) ASPENFROM Tori;
-—- Base query, returns {NULL}

SELECT ST Collect(al) FROM Tbase

WHERE ST GeomFromText ('LINESTRING (-21 -45, 154 -24)"'")

IN (SELECT ST Collect(al) FROM Tbase) ;

-- Transformed query, returns {}

SELECT r FROM Ttrans

WHERE ST GeomFromText ('LINESTRING (-21 -45, 154 -24)")

IN (SELECT r FROM Ttrans) ; XK

Fig. 6. Inconsistent handling of spatial data type and operation in Percona.

expression al IS NULL. Then, the base query performs a comparison between the JSON column a2
and the boolean expression al IS NULL in the WHERE clause. The transformed query compares a2 to
r. However, the transformed query returns an empty result set. The root cause of this inconsistency
is TiDB’s improper handling of implicit type conversion when comparing JSON data types with
boolean expressions. Instead of converting the JSON value to a numeric type, TiDB performs an
inconsistent implicit cast, leading to erroneous results.

—-— Set up the base table

CREATE TABLE Tbase (al DOUBLE, a2 JSON, a3 BIGINT) ;

INSERT INTO Tbase VALUES (-2.790e+28, 'false', 229109314);

-— Set up the transformed table

CREATE TABLE Ttrans (¥ BIGINT, a2 JSON, a3 BIGINT);

INSERT INTO Ttrans SELECT (al IS NULL), a2, a3 FROM Tori;

-- Base query, returns {false, 229109314}

SELECT a2, a3 FROM Tbase WHERE a2 <= (al IS NULL) ORDER BY a2 ASC, a3 ASC;

-- Transformed query, returns {} -
SELECT a2, a3 FROM Ttrans WHERE a2 <= r ORDER BY a2 ASC, a3 ASC; -]f

Fig. 7. Inconsistent handling of JSON data type and predicate operation in TiDB.

Case 5: Record duplication in TiDB aggregate operation with string type. Figure 8 demonstrates a
discrepancy in TiDB when executing the aggregate operation AVG. The base table Ty 4. contains
a float column al and a binary column a2. Then, the derived transformed table T}, 4,5 has two
columns, representing which were returned from executing AVG(al) GROUP BY a2 on the base
table. When querying the base table, the query produces two correct records with distinct values.
However, querying the derived transformed table unexpectedly returns duplicate records, with
each original record appearing twice.

The root cause lies in TiDB’s query optimization process, where the IN subquery in the trans-
formed query is rewritten as an INNER JOIN for performance improvement. During this process,
type conversions are applied to VARBINARY values in 2. This leads to a loss of distinctness, causing
duplicate records to be returned by the transformed query, while the base query remains correct.

Case 6: Inconsistent handling of NaN values in ClickHouse aggregate operation with numeric type.
Figure 9 shows an inconsistency in ClickHouse’s handling of NaN values in the aggregate operation
varSamp. The base table Tj,, contains two numeric columns. Then, the derived transformed table

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:18 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

-— Set up the base table
CREATE TABLE Tbase (al FLOAT, a2 VARBINARY (11l));
INSERT INTO Tbase VALUES (-3.21411e+37, 0x22693D9BBE4) ;
INSERT INTO Tbase VALUES (4.53528e+37, 0x2BA66016016);
-- Set up the transformed table
CREATE TABLE Ttrans (¥ DOUBLE, r2 VARBINARY (11));
INSERT INTO Ttrans SELECT AVG(al), a2 FROM Tbase GROUP BY a2;
-—- Base query,
returns{-8.039000231889152e+36, \aQ\xf7\xd9*\xf2}
{8.415999773927147e+37, \va\xf9\xda\x18}
SELECT AVG(al), a2 FROM Tbase WHERE (a2 OR az) IN
(SELECT a2 FROM Tbase WHERE a2 <= 0x99) GROUP BY a2 HAVING AVG(al);
-- Transformed query,
returns {-8.039000231889152e+36, \aQ\xf7\xd9*\xf2}
{-8.039000231889152e+36, \aQ\xf7\xd9*\xf2}
{8.415999773927147e+37, \va\xf9\xda\x18}
{8.415999773927147e+37, \va\xf9\xda\x18}
SELECT r, r2 FROM Ttrans WHERE (r2 OR r2)
IN (SELECT r2 FROM Ttrans WHERE r2 <= 0x99) AND r; .]‘

Fig. 8. Record duplication in TiDB aggregate operation with string type.

Tirans is created with two columns: r, representing the result of varSamp(al) GROUP BY a2, and
r2, which is carried over from the GROUP BY result. A query on the base table with a HAVING
clause filtering rows where varSamp(al) != -8.032e+37 returns NaN, 7583471. However, the
transformed query on the derived transformed table, which checks the conditionr != -8.032e+37,
returns an empty result.

The root cause of this bug lies in how ClickHouse handles NaN values in tables that define
an ORDER BY key. When a column containing NaN values is included in the ORDER BY clause,
ClickHouse adopts a special treatment of these values during query execution. Unlike regular
numeric values, NaNs are considered unordered and do not follow standard comparison semantics.
As a result, ClickHouse excludes rows containing NaN values from certain comparison operations,
most notably those involving inequality, such as !=. This behavior causes such rows to be silently
omitted from the result set, even when they logically should be included. Consequently, this can
lead to incomplete or misleading query results, especially in analytical scenarios where the presence
of NaN values is significant.

-—- Set up the base table

CREATE TABLE Tbase (al INT16, a2 UINT32) ORDER BY al;
INSERT INTO Tbase VALUES (-2913, 7583471);

-- Set up the transformed table

CREATE TABLE Ttrans ORDER BY r AS

SELECT varSamp(al) AS|r, a2 AS r2 FROM Tori GROUP BY a2;
-- Base query, returns {nan, 7583471}

SELECT varSamp(al), a2 FROM Tbase GROUP BY a2

HAVING varSamp(al) != -8.032e+37;
-- Transformed query, returns ({} -
SELECT r, r2 FROM Ttrans WHERE r != -8.032e+37; > 1§

Fig. 9. Inconsistent handling of NaN values in ClickHouse aggregate operation with numeric type.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:19

Why these bugs are only detected by EDC? EDC is designed to detect logic bugs by leveraging
a test oracle based on equivalent data construction (EDC). This approach focuses on verifying the
correctness of internal data operations by replacing expressions with their precomputed equivalents
and checking for inconsistencies in results. Unlike methods that primarily operate at the query
level, such as EET [27], or those that rely on metadata constraints like Radar [45], EDC evaluates
data-level behavior directly, offering a complementary strategy to existing techniques.

Additionally, our analysis of the bugs identified by EDC reveals several key factors that contribute
to its effectiveness. First, it systematically exercises rarely tested combinations of operations and
data types, increasing coverage of less conventional execution paths. Second, EDC evaluates a
wide range of operation invocations and type conversions, enabling it to uncover edge cases
that previous approaches fail to consider. Third, its use of equivalence-based transformations can
influence query optimization paths, thereby exposing execution-level bugs that are otherwise
hidden from conventional testing strategies. Through its data equivalence strategy, EDC is able to
generate rich and diverse test cases that penetrate deep into the internal logic of DBMSs, ultimately
enabling the discovery of subtle and previously unreported bugs.

5.5 Comparison with Existing Techniques

Compared Tools. We compare EDC against 3 state-of-the-art open-source tools for finding logic
bugs in DBMSs: TLP [37], EET [27], and Radar [45]. TLP [37] generates randomized databases
and SQL queries to uncover incorrect query results, flagging logic bugs when expected rows are
not retrieved. EET [27] detects logic bugs by performing semantics-preserving transformations
on complex SQL queries to ensure the transformed queries yield the same results as the originals.
Additionally, Radar [45] identifies logic bugs by comparing query results on databases with identical
data but differing metadata constraints, such as NOT NULL. We ran the testing tools on each target
DBMS for 24 hours and recorded the number of detected logic bugs as the metric. For TLP and
Radar, we conducted experiments using the default configurations for each DBMS. For EET, we
used the —ignore-crash option to bypass crash bugs, allowing EET to focus solely on detecting
logic bugs. This setting ensures a fair comparison, as EDC is also designed specifically to target
logic bugs rather than crashes.

Results. Table 8 displays the number of logic bugs detected by each tool in 24 hours. During the
evaluation, EDC found 8, 6, 6, 2, 5, 6, and 7 bugs in MySQL, MariaDB, Percona, PostgreSQL, TiDB,
OceanBase, and ClickHouse, respectively, while TLP detected 3 bugs in MySQL, 2 in Percona, 4
in TiDB, and none in others. Radar identified 1 bug in MySQL and Percona, 5 in TiDB, with no
support for ClickHouse, OceanBase, and PostgreSQL, and no bugs detected in MariaDB. EET found
3 bugs in MySQL, 1 in PostgreSQL, no bugs in TiDB, and 2 in ClickHouse, but it does not support
MariaDB, Percona, and OceanBase. Across the seven DBMSs, EDC detected 38 unique bugs, while
TLP, Radar, and EET identified 9, 7, and 5 bugs respectively, highlighting the complementary nature
of their testing strategies.

Furthermore, to better understand the relationship between the bugs, we investigated the bug
reports generated by these 4 tools. Figure 10 provides insight into the relationships between the
bugs detected by EDC and the other tools. In our evaluation, EDC uniquely identified 40 bugs,
demonstrating its capability to uncover a broad range of issues. Among these, 3 bugs overlap with
TLP, while no overlap exists with Radar or EET.

Analysis. EDC and TLP share 3 overlapping bugs, all related to SQL functions. This is because
both tools utilize SQL functions in their testing methodologies. However, EDC detects significantly
more bugs related to SQL functions and extends its coverage to other data operations, such as
predicate operations, which TLP might miss. The 6 unique bugs detected by TLP involve JOIN oper-
ations, which are outside the scope of EDC, as it focuses on single-table queries. The bugs detected

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:20 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

3

Table 8. Number of detected logic bugs in 24 hours. “-” indicates that the tool does not support the DBMS.

DBMS EDC TLP Radar EET
MySOQL 8 3 1 3
MariaDB 6 - 0 -
Percona 6 2 1 -
PostgreSQL 2 0 - 1
TiDB 5 4 5 0
OceanBase 6 0 - -
ClickHouse 7 0 - 2
Total 40 9 7 6

by EDC and EET are entirely orthogonal. EET specializes in finding bugs associated with advanced
SQL constructs like WITH clauses and window functions. In contrast, EDC focuses on exploring
the diversity of data types and data operations, uncovering bugs related to type conversions, and
data handling. Similarly, the bugs detected by EDC and Radar are also orthogonal. Radar identifies
metadata-related logic bugs by creating databases with varying metadata constraints. In contrast,
EDC does not involve metadata changes but focuses on equivalence relationships to detect bugs.

EDC vs. TLP EDC vs. Radar EDC vs. EET
40 3 6 40 7 40 6
TLP Radar EET
EDC EDC EDC

Fig. 10. Venn diagram for bugs found by different tools.

6 DISCUSSION

Effort of Adaptation. EDC is designed for easy adaptation to new DBMSs. The main integration
effort involves analyzing the target DBMS’s documentation to extract supported data types and
operations, which are then configured into EDC to enable automatic generation of system-specific
equivalence relationships. To further support customization, EDC provides extensible interfaces
for random SQL query generation, allowing developers to incorporate DBMS-specific features,
such as proprietary syntax, unique aggregate functions, or engine-specific behaviors. Importantly,
EDC is not bound by differences in SQL dialects or interpretations of the SQL standard. It defines
correctness based on a database-agnostic invariant: replacing a data operation with its precomputed
equivalent should preserve query results, regardless of syntax or engine semantics. This focus on
logical equivalence at the data level allows EDC to generalize across diverse platforms.

Current Constraints and Extensibility. While EDC has demonstrated effectiveness across a
wide range of DBMSs, its support for certain advanced SQL features remains a work in progress. One
such limitation involves window functions like RANK, which are challenging to support due to their
order-sensitive semantics. They could potentially be handled through advanced transformation

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:21

techniques, such as rewriting window functions into semantically equivalent forms using self-joins
or subqueries. Another ongoing extension involves support for experimental data types, such as
VECTOR in TiDB and MariaDB. Supporting these types primarily involves adapting EDC’s syntax
parser and query generation components to accommodate their usage in expressions.

Input Diversity and Test Space Coverage. EDC systematically explores a diverse test space
along two dimensions: input data and query structure. At the data level, each test case is populated
with up to 100 rows by default, containing varied values such as boundary cases (e.g., minimum/-
maximum integers and dates), NULLs, and coercion-prone inputs. Value generation is stratified by
data type to ensure balanced coverage across numeric, string, date, and other system-specific types.
At the query level, up to 1,000 SELECT queries are generated per test using randomized expression
trees (Algorithm 2). While generation is randomized, it is guided by type constraints, operator sets
(e.g., AND, <, CASE), and a configurable depth limit. This design enables exploration of a wide range
of expression structures while maintaining semantic validity.

Bug Deduplication of EDC. During our continuous testing phase, EDC uncovered over 800
issues across different DBMSs. However, a substantial portion of these were duplicate reports
stemming from the same underlying problem. Simply counting all reported issues would therefore
lead to a significant overestimation of the actual number of unique bugs. To ensure an accurate
assessment, we conducted a systematic deduplication process by grouping issues that shared the
same root causes, data type interactions, or operation-level anomalies. This allowed us to identify
and report truly distinct logic bugs with greater precision.

In detail, the deduplication process involved three steps. First, we conducted root cause analysis
by inspecting the related data types and operations of query execution paths to differentiate distinct
bugs from recurring manifestations of the same defect. Second, we grouped issues based on their
affected operations and data types to identify overlaps; for example, multiple test cases exposing
the same arithmetic overflow for a specific data type were merged into a single representative bug.
Finally, each unique issue was manually reviewed to ensure it represented a distinct logic error
rather than a variation of an existing one. Through this deduplication process, we reduced the
initial issues to 54 unique bugs, providing a precise and realistic assessment of EDC ’s effectiveness.

False Positives and False Negatives. The false positives detected by EDC primarily stem
from inconsistencies or behaviors that developers consider intentional or outside the scope of
bugs. During EDC ’s experiments, 4 bug reports were marked as “won’t fix” by the developers
and subsequently closed. Although these cases exhibited inconsistent behavior, the developers
did not regard them as bugs. For instance, one reported case in MySQL involved inconsistent
results with the AVG function, which developers clarified as expected behavior since such usage
was unsupported outside of GROUP BY queries, leading to a “won’t fix” classification. As for false
negatives, like most testing-based techniques, EDC does not aim for complete bug coverage. Its
detection capabilities are scoped to inconsistencies that arise from violations of data equivalence.
To mitigate the risk of false negatives within its target domain, EDC generates a wide range of
operation-type combinations and expression structures to increase coverage. EDC can serve as a
complementary component within a broader DBMS testing framework. By combining EDC with
approaches that emphasize query semantics or constraint-based inference, users can achieve more
comprehensive DBMS testing.

7 RELATED WORK

DBMS Logic Bug Detection. Many works have proposed various methods for detecting logic
bugs in DBMSs [21, 23, 27, 36, 37, 39, 43-46]. NoREC [36] works by generating a query with a
predicate and then transforming the query to one that DBMSs cannot optimize. A logic bug is
detected if the output changes after this transformation. TLP [37] breaks down the original query

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

314:22 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

into three separate subqueries by splitting the predicate. The combined results of these subqueries
should align with the original query’s result; if not, a logic bug is reported. PQS [39] generates
queries that are designed to always return a specific row by utilizing a custom interpreter. If the
DBMS under test fails to retrieve this row, PQS identifies it as a logic bug. Sedar [21] summarizes a
series of SQL function patterns and generates test cases based on that. The core idea of DQE [44]
is to detect logic bugs of DBMSs by comparing whether different SQL queries with the same
predicate access the same rows in the database. TQS [46] decomposes wide tables into smaller
ones and generates custom queries with join operations, using the base table to derive ground
truth results. PINOLO [23] synthesizes queries that produce supersets or subsets of the result set of
a seed query and identifies bugs when the DBMS’s output violates the expected approximation
relationship. EET [27] applies expression-level transformations that preserve query semantics,
ensuring that transformed queries produce the same results as the original queries. Radar [45]
detects metadata-related logic bugs in DBMSs by comparing query results between a database
with metadata and a raw database without metadata but containing the same data, with any result
inconsistency indicating a bug.

These works primarily focus on constructing equivalent query logic or applying different con-
straints to equivalent data. In contrast, EDC explores an alternative perspective by utilizing equiv-
alence relationships between data to detect logic bugs, offering a complementary direction to
existing approaches.

DBMS Test Case Generation. Many works have focused on generating diverse and effective
test cases for DBMSs [20-22, 26, 29, 31, 41, 51, 53]. SQLsmith [41] incorporates the abstract syntax
tree (AST) rules of SQL. SQUIRREL [53] introduces a novel intermediate representation to model
SQL queries, allowing it to infer dependencies between queries. SQLRight [31] incorporates code
coverage feedback, increasing the likelihood of uncovering logic bugs in rarely executed sections
of DBMS code. Unicorn [51] generates test cases using hybrid input synthesis, which ensures both
grammar correctness and the coverage of time-series features in queries to effectively test time-
series databases. Griffin [22] uses a grammar-free mutation approach to test DBMSs by capturing
the DBMS state information in a metadata graph. It mutates SQL queries based on this graph,
ensuring that the mutations avoid semantic errors. LEGO [29] generates test cases by proactively
exploring and analyzing type affinities between different SQL statement types, then synthesizing
new SQL sequences based on discovered affinities to improve DBMS fuzzing coverage. DynSQL [26]
utilizes dynamic query interaction to capture real-time DBMS state information, allowing for the
incremental generation of complex and valid queries.

EDC complements these methods by focusing on detecting type-related issues through equivalent
data construction. Existing techniques generate high-quality queries that can serve as valuable
inputs for EDC to perform deeper analysis at the data level. In turn, EDC s ability to uncover
subtle data-centric bugs can enhance the overall effectiveness of these methods, suggesting strong
potential for integration and mutual reinforcement between the approaches.

DBMS Test Data Generation. DBMS test data generation has also been a focus of some
studies [16, 18, 19, 28, 32, 40, 42, 47, 48, 52]. ADUSA [28] is a query-aware database generator that
produces both input data and the expected results for a given query, addressing the correctness
oracle challenge in DBMS testing. It translates the schema and query into an Alloy specification,
which is then solved to generate the necessary data. QAGen [32] generates a database that satisfies
a given query and set of constraints by integrating traditional query processing techniques with
symbolic execution. XData [19, 42] generates test data by using a constraint solver to create small,
intuitive datasets that satisfy constraints identified from query mutations while ensuring coverage
of all possible join trees with a number of datasets linear in the query size. EvoSQL [18] uses
genetic algorithms with a fitness function based on the database engine’s physical query plan to

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:23

ensure high coverage of query targets like JOIN and WHERE. DOMINO [16] generates test data for
database schema testing using domain-specific operators, improving speed and fault detection over
generalized search-based methods. TouchStone [48] enables parallel, memory-efficient query-aware
generation, while Hydra [40] supports dynamic regeneration based on query workload summaries.
SAM [52] leverages deep generative models to create high-fidelity databases that satisfy cardinality
constraints, and Mirage [47] introduces graph distillation techniques using computation trees for
efficient GNN training data generation.

While these existing techniques focus on generating data that satisfies query constraints or
adheres to schema specifications, EDC takes a different approach by targeting logic bugs through
the construction of equivalent data relationships across various data types. Furthermore, the high-
quality data generated by these techniques could be integrated with EDC, further strengthening
its ability to detect a broader range of bugs. By combining these approaches, testing can become
more efficient and comprehensive, potentially contributing to improved robustness and reliability
in DBMSs.

8 CONCLUSION

This paper introduces EDC, a novel framework for detecting logic bugs in DBMSs by leveraging
data equivalence relationships. Unlike existing approaches that primarily focus on equivalent
query structure or data constraints, EDC replaces data operation expressions with precomputed
results, enabling precise identification of inconsistencies in query outputs. This expression-level
substitution allows EDC to test whether semantically equivalent queries yield consistent outputs
under actual DBMS execution, thereby exposing subtle inconsistencies that may indicate logic bugs.
We evaluate EDC across seven widely used and well-tested DBMSs, applying it to a comprehensive
set of type-operation combinations. The framework uncovered a significant number of logic bugs,
many of which were previously unknown. Notably, a substantial portion of these bugs have
been acknowledged by DBMS developers as critical issues, highlighting the practical value of
expression-level equivalence testing in ensuring database correctness.

ACKNOWLEDGEMENT

We appreciate the valuable comments provided by the re- viewers. This research is partly sponsored
by the National Key Research and Development Project (No. 2022YFB3104000), NSFC Program
(No. 62525207, 62302256, 92167101, 62021002, U2441238), and CCF-ApsaraDB Research Fund(No.
2024007).

REFERENCES

[1] 2024. ClickHouse Operators. https://clickhouse.com/docs/en/sql-reference/operators. Accessed: October 8, 2025.
[2] 2024. MDEV-34123. https://jira.mariadb.org/browse/MDEV-34123. Accessed: October 8, 2025.

[3] 2024. MySQL Functions and Operators. https://dev.mysql.com/doc/refman/8.0/en/built-in-function-reference.html.
Accessed: October 8, 2025.

2024. Percona. https://github.com/percona/percona-server. Accessed: October 8, 2025.

2025. ClickHouse. https://clickhouse.com/. Accessed: October 8, 2025.

2025. EDC. https://github.com/THU-WingTecher/EDC. Accessed: October 8, 2025.

2025. Integer Types (Exact Value). https://dev.mysql.com/doc/refman/8.0/en/integer-types.html. Accessed: October 8,

] 2025. MariaDB. https://mariadb.org/. Accessed: October 8, 2025.
] 2025. MariaDB Data Types. https://mariadb.com/kb/en/data-types/. Accessed: October 8, 2025.
[10] 2025. MySQL. https://www.mysql.com/. Accessed: October 8, 2025.
] 2025. MySQL Data Types. https://dev.mysql.com/doc/refman/8.4/en/data-types.html. Accessed: October 8, 2025.
] 2025. OceanBase. https://github.com/oceanbase/oceanbase. Accessed: October 8, 2025.
] 2025. PostgreSQL. https://www.postgresqgl.org/. Accessed: October 8, 2025.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

https://clickhouse.com/docs/en/sql-reference/operators
https://jira.mariadb.org/browse/MDEV-34123
https://dev.mysql.com/doc/refman/8.0/en/built-in-function-reference.html
https://github.com/percona/percona-server
https://clickhouse.com/
https://github.com/THU-WingTecher/EDC
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://mariadb.org/
https://mariadb.com/kb/en/data-types/
https://www.mysql.com/
https://dev.mysql.com/doc/refman/8.4/en/data-types.html
https://github.com/oceanbase/oceanbase
https://www.postgresql.org/

314:24 Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, and Yu Jiang

[14]
[15]
[16]

[17
[18

—

[19]

[20

[t}

[21

—

[22]

[23

—

[24]
[25]
[26]
[27]

[28]
[29]

[30]
[31]
[32]
[33
[34

[35
[36

]
]
]
]
(37]
(38]
[39]

[40]

2025. SQL Data Types. https://www.databasestar.com/sql-data-types/. Accessed: October 8, 2025.

2025. TiDB. https://github.com/pingcap/tidb. Accessed: October 8, 2025.

Abdullah Alsharif, Gregory M Kapfhammer, and Phil McMinn. 2018. DOMINO: Fast and Effective Test Data Generation
for Relational Database Schemas. In 2018 IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 12-22.

Daniel Bartholomew. 2014. MariaDB cookbook. Packt Publishing Ltd.

Jeroen Castelein, Mauricio Aniche, Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018. Search-Based
Test Data Generation for SQL Queries. In Proceedings of the 40th International Conference on Software Engineering.
ACM, 1220-1230.

Bikash Chandra, Bhupesh Chawda, Biplab Kar, K. V. Maheshwara Reddy, Shetal Shah, and S. Sudarshan. 2015. Data
Generation for Testing and Grading SQL Queries. 24, 6 (2015).

Wengian Deng, Jie Liang, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, and Yu Jiang. 2024. CONI: Detecting Database
Connector Bugs via State-Aware Test Case Generation. In 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 26-37.

Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang. 2024. Sedar: Obtaining High-Quality Seeds for DBMS Fuzzing
via Cross-DBMS SQL Transfer. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1-12.

Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin: Grammar-Free DBMS Fuzzing. In
37th IEEE/ACM International Conference on Automated Software Engineering. 1-12.

Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan Zhang, Rongxin Wu, and Charles Zhang.
2023. Pinolo: Detecting Logical Bugs in Database Management Systems with Approximate Query Synthesis. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). 345-358.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang,
et al. 2020. TiDB: a Raft-based HTAP database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072-3084.
SolidIT. 2022. DB-Engines Ranking of Relational DBMS. https://db-engines.com/en/ranking/relational+dbms. Accessed:
October 8, 2025.

Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. DynSQL: Stateful Fuzzing for Database Management Systems with
Complex and Valid SQL Query Generation. In 32nd USENIX Security Symposium. 4949-4965.

Zu-Ming Jiang and Zhendong Su. 2024. Detecting Logic Bugs in Database Engines via Equivalent Expression Transfor-
mation. In Proceedings of the 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Shadi Abdul Khalek, Bassem Elkarablieh, Yai O Laleye, and Sarfraz Khurshid. 2008. Query-aware test generation using
a relational constraint solver. In 2008 23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE,
238-247.

Jie Liang, Yaoguang Chen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Yu Jiang, Xiangdong Huang, Ting Chen, Jiashui
Wang, and Jiajia Li. 2023. Sequence-oriented DBMS Fuzzing. In Proceedings of IEEE International Conference on Data
Engineering (ICDE).

Jie Liang, Zhiyong Wu, Jingzhou Fu, Yiyuan Bai, Qiang Zhang, and Yu Jiang. 2024. WingFuzz: Implementing Continuous
Fuzzing for DBMSs. In 2024 USENIX Annual Technical Conference. 479-492.

Yu Liang, Song Liu, and Hong Hu. 2022. Detecting logical bugs of DBMS with coverage-based guidance. In 31st USENLX
Security Symposium (USENIX Security 22). 4309-4326.

Eric Lo, Carsten Binnig, Donald Kossmann, M Tamer Ozsu, and Wing-Kai Hon. 2010. A framework for testing DBMS
features. The VLDB Journal 19 (2010), 203-230.

Roger C Lyndon. 1950. The representation of relational algebras. Annals of mathematics 51, 3 (1950), 707-729.
PingCAP. [n.d.]. TiDB. https://github.com/pingcap/tidb. Accessed: October 8, 2025.

Raghu Ramakrishnan and Johannes Gehrke. 2002. Database management systems. McGraw-Hill, Inc.

Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database Engines via Non-Optimizing
Reference Engine Construction. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1140-1152.

Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via Query Partitioning. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1-30.

Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted Query Synthesis. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 667-682.

Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted Query Synthesis. In 14th USENIX
Symposium on Operating Systems Design and Implementation OSDI 20). 667-682.

Anupam Sanghi, Raghav Sood, Dharmendra Singh, Jayant R Haritsa, and Srikanta Tirthapura. 2018. HYDRA: a dynamic
big data regenerator. Proceedings of the VLDB Endowment 11, 12 (2018), 1974-1977.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

https://www.databasestar.com/sql-data-types/
https://github.com/pingcap/tidb
https://db-engines.com/en/ranking/relational+dbms
https://github.com/pingcap/tidb

Detecting Logic Bugs in DBMSs via Equivalent Data Construction 314:25

[41]

[42

—

[43
[44

[lani i)

[45

[

[46]

[47]

[48]

[49

—

[50

[t

[51

—

[52]

[53]

Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2018. SQLsmith: A Random SQL Query Generator. https:
//github.com/ansel1/sqlsmith

Shetal Shah, S. Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta, and Devang Vira. 2011. Generating
Test Data for Killing SQL Mutants: A Constraint-Based Approach. In 2011 IEEE 27th International Conference on Data
Engineering. IEEE, 1175-1186.

Donald R Slutz. 1998. Massive Stochastic Testing of SQL. 98 (1998), 618-622.

Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei, Hua Zhong, and Tao Huang. 2023.
Testing database systems via differential query execution. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2072-2084.

Jiansen Song, Wensheng Dou, Yu Gao, Ziyu Cui, Yingying Zheng, Dong Wang, Wei Wang, Jun Wei, and Tao Huang.
2024. Detecting Metadata-Related Logic Bugs in Database Systems via Raw Database Construction. Proceedings of the
VLDB Endowment 17, 8 (2024), 1884-1897.

Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detecting logic bugs of join optimizations in
dbms. Proceedings of the ACM on Management of Data 1, 1 (2023), 1-26.

Qingshuai Wang, Hao Li, Zirui Hu, Rong Zhang, Chengcheng Yang, Peng Cai, Xuan Zhou, and Aoying Zhou. 2024.
Mirage: Generating Enormous Databases for Complex Workloads. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). IEEE, 3989-4001.

Qingshuai Wang, Yuming Li, Rong Zhang, Ke Shu, Zhenjie Zhang, and Aoying Zhou. 2022. A scalable query-aware
enormous database generator for database evaluation. IEEE Transactions on Knowledge and Data Engineering 35, 5
(2022), 4395-4410.

Michael Widenius, David Axmark, and Kaj Arno. 2002. MySQL reference manual: documentation from the source.
O’Reilly Media, Inc.".

Zhiyong Wu, Jie Liang, Jingzhou Fu, Mingzhe Wang, and Yu Jiang. 2024. PUPPY: Finding Performance Degradation
Bugs in DBMSs via Limited-Optimization Plan Construction. In 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE). IEEE Computer Society, 560-571.

Zhiyong Wu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang. 2022. Unicorn: Detect Runtime Errors in Time-series
Databases with Hybrid Input Synthesis. In ISSTA °22: 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, South Korea, July 18 - 22, 2022. ACM, 251-262.

Jingyi Yang, Peizhi Wu, Gao Cong, Tieying Zhang, and Xiao He. 2022. SAM: Database generation from query workloads
with supervised autoregressive models. In Proceedings of the 2022 International Conference on Management of Data.
1542-1555.

Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao Wu. 2020. Squirrel: Testing Database
Management Systems with Language Validity and Coverage Feedback. In The ACM Conference on Computer and
Communications Security (CCS), 2020.

Articles V3mod285-V3mod335 use

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 314. Publication date: December 2025.

https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data Types and Operations
	2.2 Limitations of Existing Approaches
	2.3 Definitions of Data Equivalence

	3 Design of EDC
	3.1 Overview of EDC
	3.2 Equivalent Data Construction
	3.3 Operation-Oriented Query Generation

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Detected Logic Bugs
	5.3 Comprehensive Bug Analysis
	5.4 Selected Bugs Found by EDC
	5.5 Comparison with Existing Techniques

	6 Discussion
	7 Related Work
	8 Conclusion
	References

