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Abstract—Query rewriters transform a query into a more
efficient yet semantically equivalent form, which is vital for opti-
mizing query execution. Despite its importance, query rewriting
is inherently complex, influenced by factors including rewrite
rule design, rule interactions, and semantic preservation. Conse-
quently, its implementation struggles to prevent problems, which
may result in system crashes or incorrect query results. Existing
DBMS testing approaches are generally designed for broad bug
detection. However, due to the diversity of rewrite rules, they
cover only a limited subset of rewrite scenarios, potentially
overlooking critical bugs.

In this paper, we propose Abstract Rule Guided (ARG) fuzzing
to detect bugs in query rewrites. The key idea is to use feedback
from abstract rules to guide query generation, thereby activating
more rewriting logic and enhancing bug detection. Abstract
rules provide a unified representation of the patterns (e.g., AST
structures and related constraints) that trigger rewrites, as well
as the resulting transformations. We track abstract rules to
identify which patterns have been covered. This feedback is
then used to dynamically adjust query generation, prioritizing
unexplored patterns to avoid redundancy and expose more
rewriting logic. We implemented ARG to test four popular
query rewrites, namely Apache Calcite, WeTune, SQLSolver, and
LearnedRewrite. ARG discovered 38 previously unknown bugs,
consisting of 4 crashes, 13 invalid SQL outputs, and 21 semantic
deviations. Among them, 19 have been confirmed, while the
remaining cases are still under investigation. We also compared
ARG against popular DBMS testing tools. In 24 hours, ARG
triggered 76% and 1017% more written rules, triggered 13 and
15 more bugs than SQLsmith and SQLancer, respectively.

Index Terms—Query Rewriter, Rule Feedback, Bug Detection

I. INTRODUCTION

Query rewriting is a widely adopted and critically important
technique in database management systems (DBMSs) [4],
[28]. Many DBMSs employ query rewriters as the logi-
cal optimization phase of the query optimization, leveraging
equivalence rules to transform complex query statements into
more efficient yet semantically equivalent forms [7], [29], [32].
These query rewriters enhance query performance, leading
to substantial savings in computational resource costs for
enterprises and generating considerable economic benefits.

In practice, query rewriting is inherently complex and
variable, requiring the restructuring of query expressions at the
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logical level while preserving semantic equivalence. This pro-
cess demands not only an accurate understanding of contextual
information, but also comprehensive consideration of factors
such as data distribution and index availability. Additionally,
variations in query languages, nested structures, and evolv-
ing business rules further complicate the task. Consequently,
rewriter implementations often struggle to prevent bugs: they
may occasionally crash during execution. In more complex
scenarios, rewritten queries can be invalid, containing syntax
or semantic errors, or violate semantic equivalence, resulting
in incorrect results.

For example, Figure 1 illustrates a bug in Apache Cal-
cite [3], where the rewritten query produces results that are not
semantically equivalent to the original. Specifically, Apache
Calcite mistakenly assumes certain columns are uniquely
identifying, which leads to incorrect pruning of result sets
containing NULL values, thereby violating query semantics.
This bug is triggered under two conditions. First, when the
query involves a self-join, the rewriter may reorder projected
columns incorrectly, causing essential expressions to be lost.
Second, if the primary key is of type FLOAT, unintended type
conversions during rewriting can introduce precision errors.

operatior inequal resu
CREATE TABLE tl (cl float NOT NULL, PRIMARY KEY(cl));
INSERT INTO tl VALUES (0), (0.0963786);
-- 0 yinal query
SELECT t0O.cl AS c0O, t2.cl AS cl FROM tl AS tO
RIGHT JOIN tl AS t2 ON TRUE WHERE tO.cl IS NOT NULL;

RV

jritten quet
SELECT CAST(tl.cl AS REAL) AS c0O, tl10.cl FROM tl, tl AS t10;
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Fig. 1. The query to trigger a rewrite bug in Apache Calcite. First, the
order of projection operations is incorrectly adjusted. Moreover, an extraneous
CAST operation is added to the float-type column c0, converting it to DOUBLE
with altered precision. These issues cause nonequivalence.

However, there is currently a lack of systematic test-
ing methodologies tailored specifically for query rewrites.
Many existing DBMS testing tools [22], [23], [31] effectively
uncover logic bugs and crashes, but they are primarily de-
signed for broad bug detection rather than targeting query
rewrites. Lacking rewriting semantic awareness, they often fail



to systematically trigger complex rule combinations, poten-
tially missing critical bugs in the rewriting logic. Moreover,
due to the diversity and implementation-specific nature of
rewriting rules, these methods can cover only a limited subset
of rewriting scenarios. For example, SQLsmith [23] generates
complex queries based on fixed grammar rules to enhance
syntactic and semantic correctness; nevertheless, many queries
remain structurally similar and lack the diversity needed to
fully exercise the breadth of rewriting logic.

In this paper, we propose Abstract Rule Guided (ARG)
fuzzing to detect bugs in query rewrites. The key idea is to
guide future query generation using feedback abstracted from
the rewriting rules. Rewriting rules specify the transformation
relationships between the original and the rewritten query,
serving as the foundation of the query rewriter [26]. By
abstracting these rules, ARG captures high-level patterns (e.g.,
changes in query structure) of rewriting behavior. By recording
these abstract rules, ARG identifies untriggered patterns and
guides the query generator to construct new queries containing
them, thereby exploring previously unvisited rewriting paths.
However, it has to face the following challenges:

(1) The unified abstraction of diverse rewriting rules. The
rewriting rules vary significantly in structure, semantics, and
context, often involving implicit conditions. The complexity
makes it difficult to develop a representation that is both
expressive and practical.

(2) Efficient query generation guided by these abstractions.
It requires precise mapping between query structures and rules,
as well as tracking which patterns have been tested. Moreover,
balancing the exploration of new patterns with the exploitation
of known triggers is essential.

ARG addresses the first challenge by extracting struc-
tural features from original and rewritten queries, along with
schema constraints, to create a unified triplet representation.
Specifically, ARG leverages abstract syntax trees (ASTS)
to capture structural differences between queries, forming a
triplet-based abstract rule that includes the pre-rewrite AST
subtree, the post-rewrite subtree, and encoded constraints such
as primary and foreign keys. To address the second challenge,
ARG introduces a feedback-driven query generation mecha-
nism. It maintains a set to record all abstract rules it finds.
Based on that, the SQL generator probabilistically explores
alternative AST structures to activate additional rewriting
rules. Furthermore, different database schemas may trigger
different behaviors in the query rewriter. Therefore, ARG
actively modifies the database schemas and reuses existing
abstract rules to generate queries, enhancing the activation of
diverse rewriting behaviors. To detect bugs, ARG continuously
monitors for rewriter crashes, validates query results for syntax
and semantic correctness, then executes and compares original
and rewritten queries to detect mismatches.

We implemented ARG to test four popular query rewrites,
namely Apache Calcite [3], WeTune [26], SQLSolver [5], and
LearnedRewrite [33], [34]. ARG discovered 38 previously
unknown bugs across these query rewriters. Among them, 19
have been confirmed by the rewriter developers, while the

remaining cases are still under investigation. The detected
bugs result in three major and severe failure symptoms: 4
system crashes, 13 invalid SQL outputs, and 21 query semantic
deviations, which causes database service interruptions, exe-
cution failures, or incorrect query outputs, respectively. We
also compared ARG against popular DBMS testing tools. In
24 hour experiment on these query rewriters, ARG triggered
76% and 1017% more written rules, triggered 13 and 15 more
bugs than SQLsmith and SQLancer, respectively, In summary,
we make the following contributions:

o We observe that while query rewriters are widely used
in DBMSs, bugs persist and can cause serious issues, yet
effective testing tools remain lacking.

o We propose ARG, the first fuzzing-based approach for
query rewriters, which extracts abstract rules to guide
query generation and trigger more rewriting behaviors.

o We uncovered 38 unique bugs in popular query rewriters
like Apache Calcite, including 4 crashes, 13 invalid SQL
outputs, and 21 query semantic deviations.

II. BACKGROUND AND MOTIVATION

Query Rewriter. Query rewriting plays a fundamental
role in database query optimization. It transforms initial
SQL queries into semantically equivalent but more efficient
forms, whether integrated into DBMSs or implemented as
standalone components. Rooted in relational algebra, it re-
structures queries at the logical level to optimize execution
while preserving their original semantics. Most rewriters rely
on predefined equivalence rules and dynamic pattern-matching
techniques to identify and apply valid transformations.

The implementation of rewriters is inherently complex.
Ensuring that the system accurately interprets the underlying
intent of each query, despite variations in phrasing or structure,
requires sophisticated SQL understanding capabilities. This
complexity is further compounded by the necessity to handle
ambiguous or incomplete queries gracefully, necessitating ro-
bust disambiguation mechanisms and context-aware inference
to deliver consistent and reliable results. Moreover, imple-
mentations differ across DBMSs, ranging from proprietary
solutions like MySQL Rewrite Plugin [1] to modular open-
source alternatives such as Apache Calcite [3], which is widely
recognized for its architectural flexibility.

Rewriting Rules. Query rewriters depend on equivalence
rules, which define the transformation relationships between
the original query and the rewritten query [17]. Different
DBMSs adopt varying representations for these rules. For
example, MySQL Rewrite Plugin uses system tables to ex-
press rules, Apache Calcite designs RelOptRule objects, while
WeTune employs text-based representations.

Despite diverse forms of statement, these rules can funda-
mentally be summarized as combinations of three elements:
original structure, rewritten structure, and constraint condi-
tions. During the rewriting process, the rewriter first matches
the overall structure or partial fragments of the query state-
ment with the original structures defined in the rules. When
matching rules are found, the rewriter reassembles the matched
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Fig. 2. Design of ARG. ARG tests the query rewriter through the following process: (1) Unified Abstract Rule Construction. ARG constructs abstract
rules by extracting keyword ASTs from both original and rewritten queries, locating structural differences as rule pairs, and combining them with constraint
information to capture semantic context. (2) Rule-Guided Query Generation. ARG uses abstract rules as feedback to guide the SQL generator in producing
structurally diverse and targeted queries. By encoding rule features as bitmaps and reusing generator states, it dynamically adapts syntax generation and
enables cross-schema rule propagation to improve rule coverage. (3) Semantic-Oriented Result Validation. ARG continuously monitors for rewriter crashes,
checks each query result for validity (free of syntax or semantic errors), then executes both queries and compares their results to identify mismatches.

statement portions into corresponding target structures. If the
initially rewritten query subsequently matches other rules, the
rewriter performs iterative rewriting through equivalent rule
chaining, enabling chained application of equivalence rules.

Limitations of Current Tools for Query Rewriter Test-
ing. As recent studies have shown [9], ensuring a bug-free
implementation of query rewriters in DBMSs remains a signif-
icant challenge. Despite their importance, there is currently a
lack of systematic testing methodologies specifically designed
for query rewriters. While current DBMS fuzzers have proven
effective for general database testing, they fall short when
applied to query rewriters due to their limited understanding
of internal rewriting logic and rules.

Specifically, existing tools often lack a deep understanding
of rewriting rules and the internal rewriting logic, making it
difficult to identify and trigger precise rewriting scenarios.
Traditional generation-based fuzzers like SQLancer and SQL-
smith create diverse SQL statements based on syntax rules
but struggle to systematically activate specific rewriting rule
combinations due to their random nature. Mutation-based tools
rely on instrumenting the entire DBMS to gather coverage and
runtime information, which is impractical for query rewriters
that operate independently in isolated environments. As a
result, these tools cannot effectively guide testing for rewriters.
Therefore, traditional random testing methods fail to reliably
cover complex rewriting paths, limiting their ability to detect
bugs and verify query rewriter correctness.

Basic Idea of ARG. The key idea of ARG is to use feed-
back from abstract rules to guide query generation, thereby
activating more rewriting logic and enhancing bug detection.
ARG is designed in accordance with the operational workflow
of mainstream query rewriters. By analyzing the structural
features of keywords in queries before and after rewriting,
ARG uniformly represents rewriting rules, enabling it to
capture rule information throughout the rewriting process and
characterize rewriting behavior. Using this feedback, ARG
guides the SQL generator to produce structurally diverse

SQL statements, facilitating more comprehensive activation of
equivalence rewriting rules. This method achieves rewriting
awareness without requiring knowledge of the internal imple-
mentation details, enabling more targeted and effective testing
of rewriting logic.

III. DESIGN

Figure 2 illustrates the architecture of ARG, which operates
through three core steps: Unified Abstract Rule Construction,
Rule-Guided Query Generation, and Semantic-Oriented Result
Validation. In Unified Abstract Rule Construction, ARG ex-
tracts syntactic structures and constraint information from the
original and rewritten queries, identifies structural differences
as rule pairs, and integrates constraint information to form
triplet-based abstract rules. In Rule-Guided Query Generation,
ARG uses abstract rules to guide the SQL generator in
exploring syntax variations. It also adapts database schemas
dynamically, reusing abstract rules across schema changes to
enhance rule coverage. In Semantic-Oriented Result Valida-
tion, ARG continuously monitors the query rewriter’s exe-
cution for crashes. It also validates the rewritten queries by
checking for syntax and semantic correctness. Then, ARG
runs both the original and rewritten queries, comparing their
execution outcomes. Any crash, invalid output, or semantic
deviation will be flagged as a potential rewriting bug.

A. Unified Abstract Rule Construction

Although various query rewriters exhibit significant dif-
ferences in grammatical rule definition and implementation
forms, their core rule-matching mechanisms fundamentally
rely on structured feature analysis of original query statements
and schema-matching processes. Therefore, by leveraging the
structural feature differences between original and rewritten
queries, combined with the constraints imposed by the target
database schema, we implement a black-box unified abstract
construction to express equivalence rules.

Unified Representation of Abstract Rules. We employ
abstract rules to uniformly represent both individual rules
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Fig. 3. The Process of Abstract Rule Reconstruction. The abstract rule
reconstruction involves three core processes: (1) Constructing multi-branch
keyword ASTs (75, 1) by parsing the grammatical hierarchies of the original
query and rewritten query. (2) Extracting rule pairs (F,, Fy) through node-
hash synchronization to locate divergent syntax subtrees. (3) Establishing a
unified constraint bitmap through automatic encoding of constraints.

and their rule-chaining combinations across different rewriters,
where rule-chaining combination specifically refers to the
process where rewritten queries generated by prior rules are
dynamically fed into subsequent rules for continuous process-
ing. We define the structure of an abstract rule as a triple
R = (F,, F,,C), where F, and F, are tree structure fragments
composed of keywords in the original query and rewritten
query, respectively, and C' is a constraint set under the table
structure corresponding to F},. The rule denotes that when con-
straint C' is satisfied, query statements or subclauses matching
the F, structure can be rewritten into query statements or
subclauses corresponding to the F). structure.

As shown in Figure 3, the construction of abstract rules
involves three processes. (1) Keyword AST Extraction. By
parsing the grammatical structures of the original query and
rewritten query, they are converted into hierarchical tree repre-
sentations. During this process, SQL keywords are mapped as
multi-branch tree nodes, and nested subqueries are processed
through recursion by dynamically linking sub-grammatical
subtrees to main structure nodes. At this stage, corresponding
keyword ASTs are constructed for the original query and
rewritten query, respectively, denoted as 7, and 7.

(2) Rule Extraction. First, hash-based feature encoding is
performed on nodes of the original keyword tree 7, and
rewritten keyword tree 7., converting node types and their im-
mediate child node sequences into unique hash values, which
forms the basis for difference localization. Then, through top-
down recursive traversal for synchronized comparison of node
hash values between To and T'r, the process locates tree
segments when detecting the first hash mismatched node. It
thereby defines the subtrees rooted at the mismatched positions
inT, and T, as F, and F,., respectively, extracting the (F,, F.)
rule pair. As shown in Figure 3, F), consists of the FROM node
and its subquery nodes (SELECT and FROM) within the FROM
clause, while F,. contains only a single FROM node. Due to
potential multi-layered structural differences in syntax trees,
this process may extract multiple (F,, F}.)rule pairs from a

single pair (T, T)).

(3) Constraint mapping. Based on the database table struc-
tures involved in the original query, we automatically construct
a dynamic constraint bitmap. When the source query involves
single-table retrieval, we encode the primary keys, foreign
keys, and other constraint conditions of the corresponding
table in a bitmap format. As illustrated in Figure 3, the
PRIMARY KEY and NOT NULL constraints are extracted
from CREATE statements and mapped into a bitmap structure.
For queries with multi-table join operations, we record con-
straint conditions from each participating table and consolidate
them through bitwise operations to integrate constraints of
different tables. This process ultimately generates a unified
constraint feature representation model, denoted as C.

Figure 3 gives an example extracts abstract rules from
the SQL before and after rewriting. The original query
is “SELECT * FROM (SELECT cO FROM tl) WHERE
c0 > 0;7, and the rewritten query is “SELECT cO FROM
tl WHERE c0 > 0;”, whose respective keyword trees are
denoted as 7, and 7’.. Based on the structural changes in the
AST, we extract the fragments F,, and F).. These fragments
correspond to FROM (SELECT FROM) and FROM respectively.
Therefore, the abstract rule is <FROM (SELECT FROM),
FROM, (NOT NULL))>.

Deduplication of Abstract Rules. When testing rewrit-
ers, ARG generates numerous abstract rules. To perform
accurate statistical analysis of rule quantities, structural char-
acteristics, and rule coverage validation, it is necessary to
conduct uniqueness identification and deduplication of the
rules. We observe that deep nesting structures (e.g., multi-level
subqueries or complex conditionals) cause syntactic subtrees
to diverge significantly in form. This phenomenon not only
causes functionally identical rules to be counted redundantly
but also reduces the accuracy of rule function identification
due to detailed information carried by deep nodes. To address
this issue, we propose a hierarchical hashing strategy that
uniquely identifies computational rules through multi-layer
node encoding. This methodology extracts hash combinations
from the first three F, and F;. node hierarchies as unique
identifiers, enabling robust nested structure recognition while
eliminating volatility from deeper layers.

ARG uses Algorithm 1 to determine whether rule R is
a new rule. Specifically, when R is refactored, unique fin-
gerprints are calculated for F, and F,. in R, resulting in
(fpo, fpr) for subsequent rule fast matching (Lines 1-2).
Then, all rule fingerprints in S are quickly matched against
(fpo, fpr) to filter rules in S with the same structure as R.
These matching rules are stored in match. If no structurally
identical rules are found, R is considered a new rule and
added to the existing rule set, forming a new rule set S’. When
structurally similar rules are found in S, ARG checks whether
constraint C' differs from rule.C. If a difference exists, R is
identified as a new rule and added to the new rule set (Lines 3-
13). For unique identification of a rule, we design a fingerprint
extraction function that extracts hash values from the first three
layers of keyword AST nodes as unique identifiers, where the



Algorithm 1: Deduplication of Abstract Rules

Input : Existing Rule Set S.
Current Rule R = (F,, F, C).

Output: New Rule Set S’
fpo < getfingerprint(R.F,) ;
fpr < getfingerprint(R.F;) ;
initiate(match) ;
foreach rule € S do

| match < fastmatch(rule, fpo, fpr) ;
end
if match.state = True then

| S« SU{R};
else

L T I 7 I S I

Crnateh — match.rule.C ;
5" (Crpaten =C) 7S : SU{R} ;

-
= =

end

return S’ ;

Function getfingerprint (F):

15 currentHash < 0 ;

16 foreach childNode € F.node.children do

17 if childNode.depth < 3 then

18 fpe ¢ getfingerprint(childNode) ;
19 currentHash < (currentHash + fpc) ;
20 else
21 |
22 end
23 end

24 return currentHash ;
25 End Function

——
B W R

return childNode.hash ;

hash value of a node is the sequential combination of the node
and its direct child nodes (Lines 14-25).

B. Rule-Guide Query Generation

Building upon the abstract rules extracted from ARG,
we establish a dynamic feedback mechanism by analyzing
grammatical structure patterns and constraint attributes of the
abstract rules. This mechanism enables real-time regulation of
the states of SQL generator to produce SQL queries with di-
versified structures, thereby effectively triggering the rewriter’s
equivalent rewriting rules. As Figure 4 shows, we employ an
integrated rule feedback methodology that combines Syntax-
Aware Query Adaptation and Cross-Schema Rule Propagation.

Structure-Aware Query Generation. Based on the struc-
tural connection between F, and F), in abstract rules and
common rewrite strategies, ARG uses a feedback mecha-
nism for test case generation with rule behavior classification
and syntax awareness. Specifically, the core logic for rule
behavior identification centers on the root nodes of F, and
F,. syntax trees. By locating position differences between F),
and F) root nodes in main SQL queries or subqueries and
conducting layer-by-layer comparisons between nodes, we can
determine the operational scope and specific types of rewrite
behaviors (e.g., keyword deletion, replacement operations).
The behavior of query rewriting can be categorized into three
types: operation merging, operation movement, and predicate
translation [10]. Our method can effectively identify structural
changes in keyword trees between original and rewritten
queries, thereby detecting instances of operation merging
and operation movement. For predicate translation behavior,
although we cannot directly extract changes in predicate logic,

SQL Generator Cross-Schema Hist
Rule P: gation 1story
DDL Generator e Tropogatior Schemas
{CREATE} database / table
{INSERT} value SQL Generator Status
{ALTER} constraint
Rule

DML Generator
SELECT {subquery}
{FROM} {subquery}
{WHERE} {subquery}
{Other Clause}
Appendix Clause

Structure bitmap

B =
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0|1[0]| Constraint bitmap

T Structure-Aware Query Adaptation and Clause Generation

Fig. 4. The Process of Rule-Guided Query Generation. Rule feedback
involves two processes: (1) Structure-Aware Query Generation. This process
employs a bitmap data structure to characterize the functional features
of abstract rules. ARG dynamically adjusts the generation probability of
corresponding syntactic structures in the SQL generator through real-time
analysis of these bitmap features, achieving context-sensitive adaptation of
query statements. (2) Cross-Schema Rule Propagation. Upon detecting the
triggering of new rules, ARG instantly records the complete contextual state
of the SQL generator and applies these state features to historical schemas,
thereby activating related rules across different schemas.

we can identify logic alterations caused by structural transfor-
mations, such as converting OR predicates to IN predicates.

Through statistical analysis of the keyword structures of
abstract rules, we find that the aforementioned three types of
operations can be achieved through combinations of the fol-
lowing four categories of rule behaviors: (1) WHERE-clause:
structural adjustments to WHERE conditions; (2) JOIN-change:
semantic transforms of table join methods; (3) Subquery-
change: nested modifications of subquery structures; (4)
UNION-related: logical reorganization of set operations. Si-
multaneously, we locate the position of the F}, root node within
T,, denoted as pos, to represent the location information where
transformations occur in the original query.

Based on the classified rules, ARG enables syntax-aware
feedback for test case generation. Specifically, when SQL
queries generated by the SQL generator are successfully
mapped to abstract rules, ARG performs real-time feature
matching against four predefined structure categories, gen-
erating a binary bitmap encoding. We collectively combine
the pos and bitmap encoding into feedback information, de-
noted as Feedback = pos|xg, 1,22, x3] (e.g., Feedback =
5[1,1,1,0] indicates the subtree rooted at the fifth keyword
node in 7, is rewritten with WHERE-clause, JOIN-change,
and Subquery-change behaviors). This bitmap is instantly
feedback to the generator, which dynamically reduces gen-
eration probabilities for existing structures in subsequent it-
erations, thereby exploring more syntactic combinations. For
long-untriggered structure types, ARG implements a moni-
toring mechanism. When any bitmap position remains 0 for
multiple consecutive cycles, ARG proactively adjusts gener-
ation weights to guide the generator to insert corresponding
clause structures. This strategy effectively prevents test case
homogenization and systematically enhances the completeness
of equivalence rule coverage.

We take Figure 1 as an example to demonstrate the details of



query generation. During the Unified Abstract Rule Construc-
tion stage, ARG extracts two abstract rules <FROM (RIGHT
JOIN), FROM, (NOT NULL)> and <WHERE, -, (NOT
NULL)> by analyzing SQL structure differences. In the
Rule-Guided Generation stage, ARG generates the encod-
ings 2[0,1,0,0] and 3[1,0,0,0] for the two abstract rules,
respectively. The indices 2 and 3 indicate the positions in
the original query where these rules can be applied. ARG
then randomly selects one or more of these encodings to
generate new test cases. For instance, when ARG uses
only the encoding 3[1,0,0,0], it modifies the AST struc-
ture of the WHERE clause. While other elements like table
names and variables in the query may change, the overall
keyword structure is preserved. This process can ultimately
generate the following query: SELECT * FROM tl RIGHT
JOIN t0 ON t0.c0O0=tl.cO0 WHERE EXISTS (SELECT
* FROM tO0).

Cross-Schema Rule Propagation. During the test work-
flow of ARG, the SQL generator builds lots of different
database schemas by randomly generating multiple sets of
DDL statements. The rule-matching process in the query
rewriter strictly relies on the semantic constraints of database
schemas. Specific rules are activated to rewrite original queries
only when the schema satisfies particular patterns. However,
queries generated under different schemas might involve iden-
tical constraint combinations, thereby activating abstract rules
with the same constraint condition. This characteristic creates
potential opportunities for cross-schema rule propagation.

To enhance the capability of reconstructing abstract rules
across diversified schema, we design a state feedback-based
cross-schema rule propagation mechanism. Specifically, ARG
dynamically monitors rule activation status during rewriter
testing in specific schema. When novel rules are triggered
under a particular schema, ARG records the SQL generator’s
core state vector State and previous binary bitmap encod-
ing Feedback in real-time. The State parameter influences
field combinations and structural features of generated SQL
statements. For new schema testing, ARG probabilistically
samples (State, Feedback) pairs from historical records and
substitutes them into the current testing state. By leveraging a
metadata-driven approach, propagate historical states capable
of triggering new rules to other schemas with similar con-
straints, thereby enhancing the extraction capability of abstract
rules and covering a broader range of rules in the rewriter.

C. Semantic-Oriented Result Validation

Testing query rewriters requires not only executing queries
but also establishing an effective test oracle to determine
the correctness of rewritten results. To this end, we adopt
a Semantic-Oriented Result Validation approach, which can
more accurately identify defects in the rewriter at the semantic
and logical levels. Only through such validation can errors
arising during query rewriting be systematically detected and
classified, ensuring data accuracy and system stability.

As shown in Table I, we categorize rewriter bugs into
three distinct types based on their execution behavior and

TABLE I
THREE VALIDATION CRITERIA AND RELATED BUG TYPE

Rewriting Symptom Bug Type

Q — None Runtime Crash Rewriter Crash
Q— Q' Syntactic/Semantic Error  Invalid SQL Output
Q—Q R(Q) # R(Q") Semantic Deviation

result discrepancies: (1) Rewriter Crash. When executing a
rewrite operation, the rewriter requires an original query and
schema. If it crashes and fails to output a rewritten query, this
signals a rewriter crash incident. (2) Invalid SQL Output. If the
original query executes successfully and returns results, but the
rewritten query fails due to semantic or syntactic errors, the
DBMS will raise an invalid exception. This behavior indicates
an invalid SQL output issue in the rewriter. (3) Semantic
Deviation. When original and rewritten queries both execute
successfully yet yield unequal results (R(Q) # R(Q')), this
indicates that the rewriter has a semantic deviation problem.
Semantic deviation generates logic errors without detection,
silently propagating incorrect data to downstream systems.
This absence of warnings critically undermines data integrity.

To find these three types of bugs, ARG continuously mon-
itors the query rewriter’s execution for crashes that indicate
critical failures. It validates whether the rewritten queries are
valid by checking for syntax and semantic correctness. Then,
ARG runs both the original and rewritten queries, comparing
their execution outcomes and results. Any divergence, whether
it is a crash, invalid output, or semantic deviation, is flagged
as a potential rewriting bug.

IV. IMPLEMENTATION

We implemented ARG with 8.4k lines of Java code and
about 1k lines of C++ code, built an automated testing
framework for the query rewriter, and implemented mecha-
nisms for abstract rule extraction and rule-based feedback.
The rule extraction component uses the AST node identity
binding mechanism of sql-formatter [21], which identifies SQL
structures across dialects and tags syntax tree nodes with
feature identifiers, enabling precise keyword AST extraction.

To implement the rule feedback mechanism, we developed
a customized version of SQLsmith to generate DML queries,
introducing probabilistic control flags to govern its syntax
structure generation strategy. To generate DDL statements and
enhance abstract rule extraction, we integrated SQLancer to
construct dynamic database schemas and populate test data.
This combined approach mitigates the limitations of each
tool: SQLancer’s native FUZZER lacks sufficient coverage for
complex rule patterns, while SQLsmith, despite its strength in
generating intricate query structures, does not support adaptive
schema generation. To integrate new query rewriters with
ARG, developers only need to implement our standardized
rewrite interface, which takes a query and schema as input
and returns the optimized statement.



V. EVALUATION

To evaluate the effectiveness and efficiency of ARG in
detecting bugs in query rewriters, we design experiments to
answer the following questions:

¢ Q1: Can ARG detect bugs in real-world query rewriters?

e Q2: How does ARG compare with existing techniques?

e Q3: How does rule feedback guidance contribute to the
performance of ARG?

A. Evaluation Setup

Test Rewriters. To evaluate the bug detection efficiency
of ARG, we tested four popular and widely used query
rewriters: Apache Calcite [3], WeTune [26], SQLSolver [5],
and LearnedRewrite [33], [34]. Among them, Apache Calcite
is one of the most popular open-source query rewriters, while
LearnedRewrite, WeTune, and SQLSolver represent three of
the most recent advances in query rewriting.

Basic setup. The evaluation was conducted on a server
running 64-bit Ubuntu 22.04.5 LTS, equipped with an AMD
EPYC 7763 64-core processor (128 threads) and 500 GB of
main memory. We evaluated each rewriter on its corresponding
supported DBMS (e.g., MySQL), with all rewriters updated to
their latest available versions at the time of testing: Apache
Calcite (v1.39.0) [2], WeTune (commit 3e36def4) [27], SQL-
Solver (commit c03062f) [24], and LearnedRewrite (com-
mit 4fd732b) [12]. For quantitative comparisons, we ran the
Docker containers for each rewriter testing experiment (includ-
ing DBMS, tested rewriters, and ARG) with 10 CPU cores and
10 GiB of main memory. To detect real-world rewriter bugs,
we continuously ran ARG on tested rewriters for two weeks.

B. Rewriter Bug Detection

ARG successfully discovered 38 previously unknown bugs
in four query rewriters within two weeks, including 21 seman-
tic deviations, 13 invalid SQL outputs, and 4 crashes. Among
them, 19 have been confirmed and acknowledged.

Statistics. Table II summarizes the distribution of the 38
detected bugs across four representative rewriter systems.
Specifically, ARG discovered 12, 11, 8, and 7 bugs in Apache
Calcite, WeTune, SQLSolver, and LearnedRewrite, respec-
tively. Among them, 19 bugs were confirmed by developers
as previously unknown, while the remaining cases are still
under investigation. These results demonstrate that bugs in
query rewriters remain prevalent even in production-level and
academically tested systems. ARG can detect such bugs by
constructing diverse query variants guided by abstract rule
feedback and validating semantic equivalence after rewriting.

Impact of the Detected Bugs. The detected bugs lead to three
major behaviors, including 21 semantic deviations, 13 invalid
SQL outputs, and 4 system crashes. Table II also lists the
types and descriptions of these bugs. 21 bugs caused silent
logic bugs, returning incorrect results without any warning,
which may severely affect data integrity in downstream ap-
plications. 13 bugs caused the invalid SQL outputs, where
rewritten queries contained invalid syntax, causing DBMS
execution failures. 4 bugs caused the system crashes, which

make the rewriter unavailable. These bugs emphasize the need
for rewriter-specific testing techniques such as ARG that can
target and exercise complex rewrite logic.

Case Study. To illustrate the characteristics and root causes
of the bugs detected by ARG, we present two case studies
featuring symptoms of invalid SQL output and semantic
deviation.

(1) An Invalid SQL Output in WeTune. As shown in Figure 5,
an invalid SQL output issue is uncovered in WeTune. The
original query performs a RIGHT JOIN between table t1
and a subquery aliased as t 2, using the join condition t1.cO0
= t2.c0. t2 is formed by performing a RIGHT JOIN
on two identical tables with a join condition that always
evaluates to FALSE. The ON FALSE predicate ensures the
query result for t2 contains one row with all values set
to NULL. Consequently, performing t1 RIGHT JOIN t2
produces one row where both t1.c0 and t2.c0 are NULL.
In the rewritten query, connecting subquery g0 to tl via
a LEFT JOIN is semantically equivalent to the t1 RIGHT
JOIN t2 operation in the original query. However, during the
projection phase, t0.cO0 is mistakenly aliased as cO instead
of the correct alias c1, introducing a syntax error.

same column name in
(cO smallint DEFAULT NULL) ;
(cO smallint DEFAULT NULL);
(0);

(0) 7

Misusing the
CREATE TABLE tO
CREATE TABLE tl
INSERT INTO tO VALUES
INSERT INTO tl VALUES
-- Original query
SELECT t2.c0 FROM tl RIGHT JOIN (

SELECT t3.c0 AS c0O FROM t0 AS t3

RIGHT JOIN t0 ON FALSE

WHERE t0.c0 IS NOT NULL
) AS t2 ON (tl.c0=t2.cO0)

WHERE tl.c0 IS NULL;
(NULL) v

-— Rewrltten query
SELECT g0.c0 AS c0O FROM (

SELECT t0.c0 AS c0O, t3.c0 AS cO FROM t0 AS tO

LEFT JOIN t0 AS t3 ON FALSE

WHERE NOT t0.cO IS NULL
) AS g0 LEFT JOIN tl AS tl ON g0.cO=tl.cO
WHERE tl1.c0 IS NULL;

-—- Result: java.sc

subquery

-- Result:

X

Fig. 5. Invalid SQL Output in WeTune. During the rewriting process, the
column names of the result set of subquery gO are mistakenly all labeled as
c0. This leads to an exception being triggered when performing the projection
operation on g0 .cO.

71 .SQLSyntaxErrorException

(2) A Semantic Deviation in Apache Calcite. As shown in
Figure 6, a semantic deviation is uncovered in Apache Calcite
due to an incorrect query rewrite involving both constant
columns and a subquery. The original query constructs a nested
structure where the inner subquery t0 generates a result set
with two columns, with t0.c0 being a constant column.
The outer query then projects a new column structure, with
a constant column 34 while repurposing the inner t0.cO
as output column c1, producing {34, 49}. However, the
Apache Calcite erroneously assumes the outer query layer
is redundant. Therefore, in the rewritten query, the rewriter



TABLE 11
ARG FOUND 38 BUGS FROM FOUR QUERY REWRITERS

H

Rewriter

Bug Type

Bug Description

Apache Calcite
Apache Calcite
Apache Calcite
Apache Calcite
Apache Calcite
Apache Calcite
Apache Calcite
Apache Calcite
Apache Calcite
Apache Calcite
11 Apache Calcite

O 00 ~JON W A W —

Invalid SQL Output
Invalid SQL Output
Invalid SQL Output
Invalid SQL Output
Invalid SQL Output
Semantic Deviation
Semantic Deviation
Semantic Deviation
Semantic Deviation
Semantic Deviation
Semantic Deviation

Rewritten query syntax error triggering java.sql.SQLException: Subquery returns more than 1 row.

Invalid column name in rewritten query triggers java.sql.SQLSyntaxErrorException.

Rewritten query with syntax errors like CAST (NULL AS INTEGER).

SELECT clause of rewritten query contains non-grouped columns without GROUP BY specification.
Rewritten query triggerjava.sql.SQLIntegrityConstraintViolationException since ambiguous column.
Projection errors lead to column count or order mismatch between original and rewritten queries.
Mishandling boolean logic in ON clauses, e.g., erroneously deleting (ON FALSE) predicate.

Distinct clause inconsistency between original and optimized queries induces semantic deviation.
Inconsistent query results occurred due to improper use of data type conversion (CAST (cO AS REAL)).
Incorrectly retain only the subquery in nested queries.

Rewritten query deletes original’s LIMIT clause when SELECT has only constants.

The entire query after UNION/EXCEPT is incorrectly deleted.

Causing a java.sql.SQLSyntaxErrorException in DBMS due to duplicate field names in the result set.
Rewritten query syntax error triggering java.sql.SQLException: Subquery returns more than 1 row.

Invalid column name in rewritten query triggers java.sql.SQLSyntaxErrorException.

Memory leaks in the ANTLR4 library integrated in WeTune trigger crashes during prolonged execution.
Large values in schema (e.g. INSERT INTO t0 VALUE (9999999999)) trigger numeric overflow crashes.
Unable to correctly rewrite WHERE clause boolean combinations like (false OR false).

Unable to correctly rewrite RIGHT JOIN and INNER JOIN, resulting in non-equivalent rewritten queries.
Distinct clause inconsistency between original and optimized queries induces semantic deviation.
Mistakenly swaps table positions in RIGHT JOIN clauses, breaking query equivalence.

Operator priority parsing errors, e.g., mishandling ( (cO > 0)

LIKE 0) as (cO > 0 LIKE 0).

Rewritten query syntax error triggering java.sql.SQLException: Subquery returns more than 1 row.
Invalid column name in rewritten query triggers java.sql.SQLSyntaxErrorException.
Memory leaks in the ANTLR4 library integrated in WeTune trigger crashes during prolonged execution.

Unable to correctly rewrite RIGHT JOIN and INNER JOIN, resulting in non-equivalent rewritten queries.
Mistakenly swaps table positions in RIGHT JOIN clauses, breaking query equivalence.

Distinct clause inconsistency between original and optimized queries induces result mismatch.

Unable to correctly rewrite WHERE clause boolean combinations like (false OR false).

Causing a java.sql.SQLSyntaxErrorException in DBMS due to duplicate field names in the result set.
Invalid column name in rewritten query triggers java.sql.SQLSyntaxErrorException.

(NULL) causes the syntax error.

A field ordinal binding failure triggers an AssertionError, crashing the program.
Mishandling boolean logic in ON/WHERE clauses, e.g., erroneously deleting (ON FALSE) predicate.
Non-equivalence caused by the addition of unnecessary joins in the original query.

12 Apache Calcite Semantic Deviation

13 WeTune Invalid SQL Output

14 WeTune Invalid SQL Output

15 WeTune Invalid SQL Output

16 WeTune Rewriter Crash

17 WeTune Rewriter Crash

18 WeTune Semantic Deviation

19 WeTune Semantic Deviation

20 WeTune Semantic Deviation

21 WeTune Semantic Deviation

22 WeTune Semantic Deviation Incorrect pruning of filter conditions in WHERE clauses.
23 WeTune Semantic Deviation

24 SQLSolver Invalid SQL Output

25 SQLSolver Invalid SQL Output

26 SQLSolver Rewriter Crash

27 SQLSolver Semantic Deviation Incorrect pruning of filter conditions in WHERE clauses.
28 SQLSolver Semantic Deviation

29 SQLSolver Semantic Deviation

30 SQLSolver Semantic Deviation

31 SQLSolver Semantic Deviation

32 LearnedRewrite Invalid SQL Output

33 LearnedRewrite Invalid SQL Output

34 LearnedRewrite Invalid SQL Output Using incorrect structure VALUES
35 LearnedRewrite Rewriter Crash

36 LearnedRewrite Semantic Deviation

37 LearnedRewrite Semantic Deviation

38 LearnedRewrite Semantic Deviation

Inconsistent query results occurred due to improper use of data type conversion (CAST (cO AS REAL)).

erroneously extracts only the subquery while neglecting the
fact that £ 0. c1 remains unused in the original query, causing
the rewritten query to return a different result set than the
original, thus violating query equivalence.

-— Incorrectly

INSERT INTO tl

retain only

CREATE TABLE fl (cO0 decimal (10, 0), cl wvarchar(500)) ;

VALUES (3415,

> subquery

NULL) ;

-- Origina gquery

SELECT 34 AS cO,
SELECT 49 AS cO,

49} &

X : query

SELECT 49 AS c0O, c0 AS cl FROM tl LIMIT 87;)(
-- Result: }

3415}

t0.cO AS cl FROM (
tl.cO AS cl FROM tl1 LIMIT 87

{34,

{49,

Fig. 6. Semantic deviation in Apache Calcite. During rewriting, Apache
Calcite incorrectly retains only the original query’s subquery, making the
statement not equivalent before and after rewriting.

Why only ARG discovered these bugs. ARG uniquely
detects these bugs due to its rewriting-aware design and
feedback-driven query generation. Unlike traditional fuzzers
that generate queries randomly or rely on code coverage,

ARG extracts and uses abstract rewriting rules to guide query
generation, systematically activating complex rewriting logic.
By incorporating schema constraints and semantic context, it
produces realistic queries that expose subtle bugs. Addition-
ally, its semantic validation precisely compares original and
rewritten query results, identifying errors missed by syntax-
based or coverage-driven methods.

C. Comparison with Other Techniques

To the best of our knowledge, ARG is the first dedicated
tool for testing query rewriters. Therefore, to evaluate the
effectiveness of our approach, we compared ARG with two
state-of-the-art SQL generators, SQLsmith and SQLancer,
both widely used in the industry for generating large volumes
of SQL queries that are fed into rewriters for transformation.
During the evaluation, all tools were initialized with an empty
database as input, executed under their default configurations,
and run in the same environment for 24 hours. As the testing
proceeds, the data may vary due to randomness and differences
in generation strategies. For a fair comparison, after SQLancer



and SQLsmith generated SQL queries, we sent these queries
to the target rewriter to collect coverage data and bug counts.

Coverage. Table III shows the number of covered branches
on four rewrite systems exercised by each tool. ARG signifi-
cantly outperforms SQLsmith and SQLancer in terms of rule
coverage across all four systems. Specifically, ARG covered
18% and 15% more branches in total compared to SQLsmith
and SQLancer, respectively. This result demonstrates that
ARG explores a broader and deeper range of rewriting logic
paths, increasing the likelihood of revealing correctness bugs.

TABLE III
NUMBER OF BRANCHES COVERED BY EACH TOOL IN 24 HOURS

Rewriter SQLsmith ~ SQLancer ARG
Calcite 7208 7191 9703
WeTune 2617 2727 2810
SQLSolver 2869 3045 3119
LearnedRewrite 8721 8995 9661
Total 21415 21958 25293
Improvement 18%71 15%7 -

The primary reason for ARG’s improved code coverage
is its ability to cover more rewrite rules than other tools.
Figure 7 shows the number of unique rewrite rules exercised
by each tool. ARG consistently covers more rewrite rules than
the other two tools. Specifically, ARG covers a total of 76%
and 1017% more abstract rules than SQLsmith and SQLancer,
respectively. Furthermore, we also evaluate the coverage of the
actual rewriting rules within each rewriter. Table IV shows
the number of unique combinations of real rewriting rules
exercised by each tool. ARG covers a total of 53% and 476%
more unique rewriting rule combinations than SQLsmith and
SQLancer, respectively. These results highlight the advantage
of ARG’s abstract rule-guided generation strategy, which in-
tentionally targets equivalence-preserving transformation logic
rather than relying on random or grammar-driven query syn-
thesis.

TABLE IV
NUMBER OF UNIQUE REWRITING RULE COMBINATIONS IN REWRITER BY
EACH TOOL IN 24 HOURS

Rewriter SQLsmith ~ SQLancer ARG
Calcite 7548 1824 11544
WeTune 289 44 324
SQLSolver 370 56 402
LearnedRewrite 814 469 1524
Total 9021 2393 13794
Improvement 53%71 476% 1 -

Triggered Bugs. Table V presents the number of unique
rewriter-specific bugs detected by each tool. As shown in the
table, ARG detects 13 and 15 more bugs than SQLsmith
and SQLancer, respectively. SQLsmith primarily generates
standalone SELECT statements through random expression
synthesis, which limits its ability to cover complex rewrite

(a) WeTune (b) SQLSolver

— ARG
—— SQLsmith
150{ — SQLancer

— ARG
—— SQLsmith
—— SQLancer

Abstract Rule Number
Abstract Rule Number

0 2 4 6 8 10 12 14 16 18 20 22 24
Test time (h)

0 2 4 6 8 10 12 14 16 18 20 22 24

Test time (h)

(c) Calcite (d) LearnedRewrite

— ARG
—— sQLsmith
—— SQLancer

— ARG
3000 { — SQLsmith
— SQLancer

2500

2000 2500

2000
1500
1500

1000

Abstract Rule Number
Abstract Rule Number

@
8
8

0 2 4 6 8 10 12 14 16 18 20 22 24
Test time (h)

0 2 4 6 8 10 12 14 16 18 20 22 24
Test time (h)

Fig. 7. Results of Different Tools in Extracting Abstract Rules under
a 24-Hour Experiment. We tracked the growth in the number of unique
abstract rules extracted by SQLancer, SQLsmith, and ARG during a 24-
hour experiment. ARG demonstrated a significant advantage in abstract rule
extraction capability.

rules that often require specific structural patterns or contextual
constraints. Similarly, SQLancer focuses on generating SQL
queries guided by predefined oracles and grammar constraints,
making it difficult to explore the full spectrum of rewrite
logic, especially those involving equivalence-preserving trans-
formations. In contrast, ARG systematically identifies and
targets rewrite rules through its abstract-rule-guided genera-
tion strategy. By analyzing rewriting behavior and validating
semantic equivalence between original and rewritten queries,
ARG can effectively uncover subtle logic violations, invalid
rule applications, and rewriter-internal crashes that are missed
by general-purpose SQL generators.

TABLE V
NUMBER OF TRIGGER BUGS BY EACH TOOL IN 24 HOURS

Rewriter SQLsmith ~ SQLancer ARG
Calcite 9 6 12
WeTune 5 8 11
SQLSolver 6 4 8
LearnedRewrite 5 5 7
Total 25 23 38
Increment 131 151 -

D. Effectiveness of Rule-Guided Strategy

To assess the effectiveness of the abstract rule guided
fuzzing strategy, we implemented a variant of ARG, denoted
as ARG-, which disables the rule feedback component. ARG-
generates queries using unguided, randomized clause synthesis
based solely on grammar structure, without considering rule-
triggering feedback or structural transformations observed
during rewriting. We compare ARG and ARG- across all four
evaluated query rewriters over 24 hours.



Table VI shows the number of rewrite rules exercised
by each approach after 24 hours. Across all four rewriters,
ARG triggered significantly more rewrite rules than ARG-
. Specifically, ARG achieved a 46% improvement in total
rule coverage. In addition, ARG achieved a 10% improvement
in total code branch coverage compared to ARG-. The main
reason behind this improvement lies in ARG’s ability to infer
and adapt its query generation strategy based on abstract rule
feedback. By dynamically analyzing structural transformations
between original and rewritten queries, ARG constructs a set
of abstract rules that capture equivalence-preserving rewrites.
These rules serve as guidance for synthesizing new SQL
inputs that are more likely to trigger under-covered or complex
rewriting logic. In contrast, ARG- lacks this adaptive mech-
anism and synthesizes queries randomly, leading to limited
exploration of the rewriting space.

TABLE VI
THE NUMBER OF DISTINCT ABSTRACT RULES AND CODE COVERAGE
BRANCHES IN ARG AND ARG- OVER 24 HOURS

Distinct Rules Code Coverage

Rewriter ‘ ‘

| ARG- ARG | ARG- ARG
Calcite 2427 2648 8053 9703
WeTune 88 169 2737 2810
SQLSolver 105 182 3055 3119
LearnedRewrite 1661 3256 9158 9661
Total | 4281 6255 | 23003 25293
Improvement | 46%71 - |  10%7T -

VI. DISCUSSION

DBMS Buggy Behavior May Cause Result Mismatch. We
compare original and rewritten query results to detect inconsis-
tencies introduced by rewriting. Given that potential logic bugs
in DBMS or their inherent implementation characteristics (e.g.,
query optimization strategies, incomplete support for specific
syntax) might manifest as semantic equivalence deviations,
the detected anomalies could stem from underlying database
mechanisms rather than the rewriting logic itself. In the
evaluation, we detect a total of 39 bugs in the target DBMSs,
38 of which are related to the rewriter, with one bug caused
by buggy behavior in MySQL.

Figure 8 illustrates that logically equivalent expressions
before and after rewriting can unexpectedly produce different
execution results on MySQL. Due to MySQL’s implicit type
conversion mechanism, the expression NULLIF (0, ’any
text’) evaluates to NULL. These discrepancies stem from
underlying buggy behavior in DBMSs rather than bugs in the
rewriter implementation. Therefore, when reproducing test re-
sults, it is essential to account for database-specific behaviors.
We perform cross-database validation by executing rewritten
queries across multiple DBMSs, to distinguish rewriter bugs
from DBMS-specific behaviors.

Migration Ability to Other Rewriters. ARG does not
require knowledge of the internal implementation details or
rule scheduling mechanisms of query rewriters, making it

10

CREATE TABLE tO(cO float);
CREATE TABLE tl (cO0 text);
INSERT INTO tO VALUES (0);
INSERT INTO tl VALUES ('any text');
Original query
SELECT NULLIF (

c0, COALESCE (cO,
) AS cl FROM tO; ~/

-- Result:
-—- Rewritten quer
SELECT
CASE WHEN cO
CASE WHEN cO IS NOT NULL THEN cO

ELSE ((SELECT * FROM tl)) END
THEN NULL ELSE c0O END AS cl

FROM tO;
- {0} x

Result:
Fig. 8. The Feature in MySQL. ARG generates a result mismatch due to
buggy behavior inherent in MySQL.

(SELECT cO FROM tl))

relatively easy to adapt to other rewriting systems. Specifically,
any rewriter that takes an input schema and original query as
input and produces one or more rewritten queries as output can
be tested by ARG. In our experimental evaluation, we tested
both rule-based query rewriters (WeTune, SQLSolver, and
LearnedRewrite) and a cost-based query optimizer (Calcite).
For rule-based rewriters, given a schema and an input query
specification, they deterministically generate rewritten queries
based on predefined rewriting rules. In contrast, cost-based
rewriters adopt dynamic optimization strategies that consider
physical execution metrics such as disk I/O costs, and may
produce different rewritten queries even under the same initial
conditions. The evaluation results show that ARG is effective
in detecting bugs in both types of rewriters, as it does not
rely on the specifics of internal scheduling logic but instead
focuses on exercising a broad range of rewriting behaviors.

VII. RELATED WORK

DBMS Fuzzing. DBMS fuzzing employs two main
approaches for query generation: mutation-based and
generation-based methods. Traditional mutation-based tools
like AFL [30] often generate semantically invalid SQL that
DBMSs or rewriters cannot parse or fully test. To enhance
the quality of query generation, recent research efforts have
focused on improving the syntactic validity of mutated SQL
queries. SQUIRREL [31] builds an intermediate representation
(IR) based on SQL grammar rules and creates syntax-valid
SQL queries using mutation techniques from AFL’s core
engine with coverage feedback, effectively exposing crashes
in DBMS. SQLRight [13] employs syntax tree mutation for
test case generation and adapts inputs based on coverage
feedback. GRIFFIN [8] introduces a grammar-free mutation
method to generate queries. Generation-based fuzzers
generate queries using predefined templates or models. For
example, SQLsmith [23] constructs large numbers of SELECT
statements by populating abstract syntax trees (ASTs) with
metadata to test DBMSs. SQLancer [22] leverages predefined
syntax tree models to produce grammatically valid SQL



queries, while also creating schemas and populating the
database with data. APOLLO [11] focuses more on generating
complex or adversarial SQL structures that are likely to
degrade the performance of the DBMS.

While existing approaches are effective, they face limi-
tations when applied to standalone query rewriters. Neither
mutation-based nor generation-based methods can sufficiently
activate internal rewrite rules or thoroughly test the complex
behaviors of rewriters. In contrast, ARG guides test case
generation through abstract rules, exploring more rewrite logic
within the rewriter.

Differential Testing. Differential testing validates DBMS
by executing the same test case in different implementations to
verify if they yield matching results [6], [16]. Any unexpected
output reveals a potential bug in the system. RAGS [20] detects
system bugs by executing identical queries across different
DBMS instances. Gu et al. evaluate query optimizer quality
through comparative analysis of execution plans under varied
hint configurations [9]. APOLLO [11] identifies performance
issues by comparing the execution durations of identical SQL
queries across multiple versions of the target DBMS.

Differential testing is difficult to directly apply to query
rewriters. Substantial rewriting logic differences cause the
same query to yield diverse outputs, rendering traditional
differential testing ineffective. ARG focuses on checking the
semantic equivalence between the original and rewritten query,
which shares similarity with differential testing.

Metamorphic Testing. Recent works have also adopted
metamorphic testing to construct semantically equivalent
queries to test DBMSs. NoREC [18] converts an optimizable
query into a non-optimizable form of the query, then identifies
logic bugs by comparing their execution results. Similarly,
TLP [19] employs ternary logic to generate three equivalent
queries combined via UNION operations. Amoeba [14] targets
DBMS performance anomalies by crafting logically equivalent
queries and examining variations in their runtime behavior
TQS [25] detects logical bugs by generating semantically
equivalent multi-table join query pairs and checking for incon-
sistent execution results. GRev [15] automatically tests graph
databases by rewriting queries into logically equivalent forms
based on a unified graph abstraction, successfully uncovering
multiple previously unknown vulnerabilities.

ARG differs from these tools by treating the rewritten query
as output and directly verifying semantic equivalence, instead
of using predefined metamorphic relations to generate inputs.
Therefore, ARG focuses on detecting semantic inconsistencies
in query rewriting, rather than testing general input-output
transformations as in metamorphic testing.

VIII. CONCLUSION

Query rewriters frequently contain subtle bugs, but exist-
ing testing techniques are insufficient, leaving many bugs
undetected and potentially causing incorrect query results.
To address this, we propose ARG, the first novel fuzzing
framework that automatically extracts abstract rewrite rules by
comparing query syntax trees and leverages feedback-driven
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test generation to maximize rule coverage without requiring
knowledge of the rewriter’s internal logic. Our evaluation
shows that ARG effectively detects 38 previously unknown
bugs across multiple real-world query rewriters, outperforming
state-of-the-art testing tools. ARG is both intuitive and highly
extensible, allowing straightforward adaptation to test arbitrary
query rewriters. In the future, we plan to extend ARG to
further test SQL optimizers, with the goal of identifying
semantic errors and suboptimal plan generation.
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