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Abstract—The Linux kernel is the foundation of billions of1

contemporary computing systems, and ensuring its security and2

integrity is a necessity. Despite the Linux kernel’s pivotal role,3

guaranteeing its security is a difficult task due to its complex4

code logic. This leads to new vulnerabilities being frequently5

introduced, and malicious exploits can result in severe conse-6

quences like Denial of Service (DoS) or Remote Code Execu-7

tion (RCE). Fuzz testing (fuzzing), particularly Syzkaller, has8

been instrumental in detecting vulnerabilities within the kernel.9

However, Syzkaller’s effectiveness is hindered due to limitations10

in system call descriptions and initial seeds. In this paper, we11

propose SUNFLOWER, an initial corpus generator that leverages12

existing exploits and proof-of-concept examples. SUNFLOWER is13

specifically designed to meet the critical requirements of industry14

deployments by facilitating the construction of a high-quality15

seed corpus based on bugs found in the wild. By collecting and16

analyzing numerous real-world exploits responsible for kernel17

vulnerabilities, the tool extracts essential system call sequences18

while also rectifying execution dependency errors. This approach19

addresses a pressing industry need for more effective vulnerabil-20

ity assessment and exploit development, making it an invaluable21

asset for cybersecurity professionals. The evaluation shows that,22

with the help of SUNFLOWER, we find a total number of 2523

previously unknown vulnerabilities within the extensively tested24

Linux Kernel, while by augmenting Syzkaller with SUNFLOWER,25

we achieve a 9.5% and 10.8% improvement on code coverage26

compared with the Syzkaller and Moonshine.27

I. INTRODUCTION28

The Linux kernel is a vital component in modern computing29

systems, powering millions of servers and devices worldwide.30

As the last line of defense for computer systems, the operating31

system’s kernel demands robustness and resilience, which are32

critical to preserving the system’s integrity and safety. If any33

kernel vulnerability is exploited maliciously, it can lead to34

detrimental results, such as Denial of Service (DoS) or Remote35

Code Execution (RCE).36

Given the size and complexity of a modern OS kernel,37

it is difficult to ensure that bugs are not introduced with38

new features or fixes for other bugs, notwithstanding existing39

or dormant legacy bugs. Currently, many projects aim to40

test the Linux kernel continuously to mitigate this issue.41

Fuzz testing [1], [2], a.k.a. ”fuzzing”, is a dynamic soft-42

ware testing technique known for its exceptional ability to43

identify vulnerabilities. It has successfully detected numerous44

vulnerabilities across various software applications, including45

operating system kernels. As of current, Google’s Syzkaller 46

kernel fuzzer [3] is the state-of-the-art in kernel fuzzing. 47

Its inner workings are similar to many other state-of-the-art 48

fuzzers, where it uses system call descriptions (in Syzlang [4]) 49

written by kernel experts and pseudo-randomly generates a 50

series of system calls, a.k.a. a system call sequence, then runs 51

the generated inputs during kernel execution, and uses code 52

coverage as guidance to identify inputs that trigger new kernel 53

behavior and save them for further mutation. To date, Syzkaller 54

has successfully uncovered thousands of critical vulnerabilities 55

within the Linux kernel and is widely adapted into different 56

kernel vendors’ CI/CD pipelines. Given Syzkaller’s popularity, 57

many research works aim to augment specific aspects of its 58

workflow. Taking Moonshine [5] as an example, it extracts 59

execution traces from real-world programs and converts them 60

into Syzlang, thereby improving the overall fuzzing efficiency. 61

Despite Syzkaller’s perceived effectiveness, we find that a 62

typical kernel fuzzing campaign tends to stagnate in coverage 63

statistics and bug detection within a few days. Its overall 64

effectiveness is limited from further exploration and exploita- 65

tion mainly due to the limited information that system call 66

descriptions provide. The current pool of Syzlang is written 67

by the Linux kernel developers and maintainers, totaling 68

around four thousand Syzlangs. These descriptions mainly 69

convey the syntax information of system calls to the fuzzer, 70

whereas the semantic information is partial and qualified at 71

best. Information such as particular argument combinations or 72

system call chains to trigger a complex kernel state are left to 73

the fuzzer to blindly try and find, with only code coverage 74

as guidance and randomized methods for system call and 75

argument generation. 76

The quality and quantity of the Syzlang have a profound 77

influence on the Syzkaller’s fuzzing efficiency, as it determines 78

the code exploration ability of Syzkaller. Some works [6], [7] 79

aim towards extracting more detailed and specific system call 80

descriptions for Syzkaller; due to the immense complexity 81

of the Linux kernel, no amount of effort can produce a set 82

of system call descriptions that can entirely encompass the 83

kernel’s state space. In contrast, a more pragmatic approach 84

is to provide Syzkaller with a set of high-quality initial 85

seeds, which extend the initial execution traces of the fuzzer 86

broad and deep within the kernel’s code, allowing for the 87



fuzzer to easily overcome difficult situations and increase its88

effectiveness easily. Previous research in this field, such as89

Moonshine, uses real-world system call traces to produce an90

initial seed set. The drawback of doing so is that the produced91

seeds generally do not add much meaningful information to92

the fuzzing process and are not well-suited to be integrated into93

continuous testing scenarios. We observe that using system call94

traces from real-world Proof-Of-Concept (PoC) exploits pro-95

gram obtained from Common Vulnerabilities and Exposures96

(CVE) vulnerabilities allows one to produce a seed set with97

system call sequences and argument values that actually trigger98

a complex kernel state, therefore allowing the fuzzer to cover99

more code effectively, and potentially detect more bugs. This100

approach is well-suited for integration into a continuous testing101

environment, as CVE vulnerabilities are produced actively.102

However, to apply such an approach, we need to address the103

following challenges.104

First, exploits programs do not provide sufficient informa-105

tion regarding their runtime requirements, nor do they run106

out-of-the-box. To be able to extract the relevant system call107

sequences from the exploits programs, we need to design a uni-108

fied initial corpus construction mechanism. By far, these pro-109

grams in the wild are fragmented and separate across multiple110

open-source platforms like Google Forum and GitHub. This111

widespread distribution complicates the collection process.112

Furthermore, these exploits need to be converted to Syzlang;113

however, given that these exploits stem from different kernel114

versions and vendors, they often feature operations or system115

calls that either lack support in mainstream Linux kernels116

or demand specific configurations, adding to the intricacy of117

kernel fuzzing.118

Second, the extracted sequences need to be matched to their119

respective kernel versions and runtime environments, therefore120

requiring mechanisms that automatically prune, test, and inte-121

grate an incoming system call sequence into a running fuzzing122

campaign. In reality, the extracted corpus contains operations123

across different kernel versions and vendors. Therefore, some124

operations may no longer be compatible with the current125

Linux kernel. As a result, during the testing, the kernel may126

encounter frequent crashes, severely hampering the overall127

fuzzing performance. To this end, we need a mechanism that128

is capable of refining the provided system call sequence into129

a valid seed for fuzzing, thus further boosting the fuzzer’s130

fuzzing efficiency.131

In this paper, we propose SUNFLOWER, which utilizes132

exploits in the wild to boost the fuzzing performance. In133

detail, we first collect exploits from open-source communities,134

especially, we focus on those exploits that were not reported135

by Syzkaller, as they contain sequences of system calls or136

argument assignments that Syzkaller does not produce. Then,137

we construct the initial corpus to incorporate these exploits138

into the Syzkaller. Specifically, we dispatch all exploits to139

corresponding versions of Linux kernel to extract the execution140

trace, and then we convert them into Syzlang. Last, during the141

testing, we monitor the execution of Syzkaller, identify those142

operations within the initial corpus that frequently introduce143

false-positive crashes to the fuzzer, and automatically remove 144

them. Using SUNFLOWER, we can effectively integrate real- 145

world vulnerabilities into traditional kernel fuzzers’ testing 146

process, enabling them to cover previously uncovered code 147

sections and boost the overall fuzzing performance. 148

We implemented SUNFLOWER and applied its generated 149

initial seed set to Syzkaller. Our evaluation shows that SUN- 150

FLOWER helps to find a total number of 25 previously un- 151

known vulnerabilities across extensively tested versions of 152

Linux kernel, of which 3 have been assigned CVE IDs. 153

Furthermore, with the help of SUNFLOWER, Syzkaller can 154

cover on average 9.5% more code, while Moonshine gains 155

an increase in average code coverage by 10.8%. In summary, 156

this paper makes the following contributions: 157

• We propose to use the exploits in the wild to boost the 158

performance of kernel fuzzing. 159

• We propose SUNFLOWER, which can incorporate col- 160

lected exploits with Syzkaller’s Syzlang specification and 161

can automatically update the corpus during testing. 162

• We found a total number of 25 previously unknown bugs 163

within different versions of Linux kernel, with 3 CVE 164

number assigned. To promote open-source research, we 165

provide the source code of freely SUNFLOWER1. 166

II. BACKGROUND AND MOTIVATION 167

A. Kernel Fuzzing 168
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Fig. 1: Overall Workflow of Syzkaller. Using the system call
descriptions as input, Syzkaller generates a set of system call
sequences as input for the target kernel to execute. Then,
based on the feedback information such as code coverage and
crashes, Syzkaller saves those interested inputs to the corpus
for further input mutation.

Given the critical importance of the Linux kernel, many 169

works [8]–[12] have attempted to integrate fuzzing into kernel 170

testing to enhance its security and stability. For instance, 171

KAFL [13] leverages specific hardware features to implement 172

binary instrumentation and a rapid snapshot recovery mecha- 173

nism, thereby facilitating effective testing of the target kernel. 174

However, a notable limitation of KAFL is its reliance on 175

generating inputs entirely at random, which, given the kernel’s 176

stringent input specifications, results in relatively constrained 177

fuzzing performance. Syzkaller, as the state-of-the-art kernel 178

fuzzer, is known for its remarkable performance and has 179

a workflow illustrated in Figure 1. Central to Syzkaller’s 180

1SUNFLOWER is available at: https://github.com/zzqq0212/Sunflower.



approach is the utilization of Syzlang as its fuzzing input.181

Syzlang is a domain-specific language meticulously crafted182

to articulate system calls in a structured format, typically183

provided by kernel experts. This structured approach enables184

Syzkaller to generate sequences of system calls, emulating185

real-world operations and probing for unexpected system186

behaviors, thereby enhancing its ability to identify vulnera-187

bilities. Upon detecting an input that triggers a system crash188

or uncovers new code coverage, Syzkaller saves it to a test189

case queue, referred to as the corpus. By issuing a higher190

mutation and execution probability to the inputs within the191

initial corpus, Syzkaller is able to conduct more thorough and192

comprehensive testing.193

While Syzkaller is known for its effectiveness in kernel194

fuzzing, during the general fuzzing campaign, despite the195

complexity of the kernel’s code logic, Syzkaller’s fuzzing196

progress often plateaus within a few days. This limitation197

is primarily attributed to the circumscribed information pro-198

vided by system call descriptions. The existing Syzlangs,199

approximately four thousand in number, are crafted by Linux200

kernel developers and maintainers. The number of Syzlang201

determines the Syzkaller’s code exploration ability to a large202

extent. Some works try to boost the Syzkaller’s performance.203

For example, Moonshine harnesses operations emitted during204

real-world program execution as input and employs a system205

call distillation algorithm to generate test cases of superior206

quality, thereby enhancing fuzzing efficiency.207

B. Motivating Examples208

The initial corpus holds significant weight in determining209

the overall performance of fuzzing, as it directly influences the210

fuzzer’s ability to explore code. However, given the intricate211

complexity of the Linux kernel, crafting a set of Syzlang that212

fully encapsulates the kernel’s state space is an impossible213

task. A more viable strategy involves equipping Syzkaller214

with a robust set of initial seeds. We find that a wealth of215

exploits programs represent some of the kernel’s in-depth216

error states; therefore, they contain execution traces capable217

of triggering complex kernel states, where the Syzkaller can218

hardly generated based on its original Syzlang set. By lever-219

aging such traces into the initial corpus, Syzkaller is enabled220

to probe more extensively into the kernel code and state221

space, therefore achieving more effective code coverage and222

potentially uncovering more unknown vulnerabilities.223

Here, we demonstrate the Syzlang and the corresponding224

execution trace of an exploits program found by SUNFLOWER225

as Figure 2. The relevant repair patch can refer to Listing 1.226

In short, when a user attempts to remove an extent status227

and subsequently inserts a new one with the intention of228

merging it, a use-after-free bug happens. As we can see229

from the above figure, this bug is hidden deep within the230

kernel’s code logic; triggering this bug requires using a set of231

subset operations, including creating a file, conducting write232

operations, and deallocating the file. Traditional kernel fuzzers233

like Syzkaller may find it hard to find such a bug, as randomly234

generated input can hardly generate such complex input that235

1 // Exploits Source Code
2 int main(void) {
3 intptr_t res = 0;
4 memcpy((void*)0x20000000, "./file0\000", 8);
5 res = syscall(__NR_creat, 0x20000000ul, 0ul);
6 if (res != -1)
7 r[0] = res;
8 memcpy((void*)0x20000040, "./file0\000", 8);
9 res = syscall(__NR_creat, 0x20000040ul, 0ul);

10 if (res != -1)
11 r[1] = res;
12 memcpy((void*)0x20000080, "threaded\000", 9);
13 syscall(__NR_write, r[1], 0x20000080ul,

0xfb3ful);
14 syscall(__NR_fallocate, r[0], 0x10ul, 0xful,

0x8000ul);
15 }
16

17 // Corresponding Strace
18 r0 = creat(&(0x7f0000000000)='./file0\x00', 0x0)
19 r1 = creat(&(0x7f0000000040)='./file0\x00', 0x0)
20 write$cgroup_type(r1, &(0x7f0000000080), 0xfb3f)
21 fallocate(r0, 0x10, 0xf, 0x8000)

Fig. 2: The Syzlang and corresponding execution traces for a
previously unknown bug found by SUNFLOWER.

contains such logic. This highlights the necessity of the initial 236

corpus. Moreover, we noticed that there are lots of kernel bugs 237

and their corresponding PoC programs separated in different 238

open-source platforms that are not found and reported in 239

the by Syzkaller. By collecting and utilizing them as the 240

initial fuzzing corpus, we can enable Syzkaller to generate test 241

input with more semantic information and cover those parts 242

that are hard to cover by original Syzkaller, thereby greatly 243

augmenting the Syzkaller’s fuzzing efficiency and allow test 244

deeper into the kernel’s code logic. However, to utilize such 245

programs, we may need to face the following two challenges. 246

Firstly, an automated and unified mechanism is required to 247

construct the initial corpus efficiently, enabling the execution 248

of exploits program and extraction of the execution trace 249

from these programs. However, publicly available exploits 250

programs are scattered across diverse open-source platforms 251

like Google Forum and GitHub, complicating the collection 252

process. Moreover, converting exploits programs into Syzlang 253

poses challenges due to the diversity in their originating kernel 254

versions, configurations, and vendors. This may introduce 255

system calls that are either unsupported or necessitate specific 256

configurations in mainstream Linux kernels. Secondly, an 257

automatic mechanism capable of checking the compatibility of 258

each Syzlang within the constructed corpus during testing and 259

dynamically removing Syzlang instances that are not compat- 260

ible with the target kernel. Specifically, as mentioned above, 261

the extracted corpus contains Syzlang from different kernel 262

versions and vendors; consequently, some Syzlang and their 263

operations may not align with the current Linux kernel. As a 264

result, the kernel may encounter frequent crashes, introducing 265

many false positives to the fuzzer and significantly impeding 266

overall fuzzing performance. Therefore, a mechanism that 267

avoids operations incompatible with the kernel and enhances 268

fuzzing efficiency is imperative. 269
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III. DESIGN270

We proposed SUNFLOWER, an initial corpus generator that271

utilizes existing exploits programs. By collecting the exploits272

programs in the wild, SUNFLOWER can effectively convert273

them into Syzkaller’s initial corpus, thereby improving the274

fuzzing performance. The detailed workflow is demonstrated275

as Figure 3. As we can see from the figure, SUNFLOWER276

consists of two phases, namely, the initial corpus construct and277

the runtime corpus prune. Within the initial corpus construct278

phase, we first collect existing PoC programs from different279

open-source communities. Then, using the system call extrac-280

tor, we try to compile, execute, and extract their execution281

trace under different versions of the Linux kernel. Based on282

the execution trace, SUNFLOWER generates the Syzlang as the283

initial corpus and modifies that Syzlang that does not conform284

to Syzkaller’s requirements. During the runtime corpus prune285

phase, SUNFLOWER checks the crash report and filters out286

those Syzlang sequences that may frequently introduce false-287

positive crashes during the fuzzing process, thereby improving288

the fuzzing efficiency.289

A. Initial Corpus Construct290

To extract high-quality seeds as the initial corpus, we291

first propose the initial corpus construction. This requires us292

to collect large amounts of exploits programs from diverse293

sources, efficiently analyze their severity, bug type, and if con-294

taining any reproduction program. Utilizing these programs,295

we extract their respective system call traces and generate296

relevant Syzlang, forming the initial corpus for Syzkaller.297

1) Exploits Data Preparation: Currently, exploits pro-298

grams for kernel vulnerabilities are widely distributed and299

come from multiple sources. At the same time, most of these300

programs are submitted and disclosed by individual kernel301

security researchers. The majority of these exploits programs302

are disclosed in some personal blogs, Linux kernel mailing303

lists, discussion Groups, etc. In most cases, the coding style304

and programming language of these programs also show huge305

differences due to the different personal styles of kernel306

security experts. It is difficult to quickly identify and collect307

these programs using unified interface specifications. There- 308

fore, efficiently collecting and organizing these PoC programs 309

is a challenging problem. 310

TABLE I: List of linux kernel exploits that collected from
NVD, Github, and Google.

Exploit Types NVD Github Google Count
privilege escalation 35 22 11 68
logic error 42 5 9 56
memory corruption 7 3 3 13
out-of-bounds 2 16 10 28
use-after-free 4 7 12 23
double free 4 5 2 11
null point defer 14 7 9 30
memory leak 20 3 8 31

Total 128 68 64 260

Data Collection. To address the aforementioned challenge 311

of collecting exploits programs, we have curated public dis- 312

closure sources from open-source communities, such as open- 313

source sites, active security experts’ personal blogs, and Linux 314

subscription RSS sites. Our focus is directed toward vulner- 315

abilities that can jeopardize the security and integrity of the 316

system, particularly those within the kernel’s critical modules. 317

Table I illustrates the programs we have amassed. To better 318

collect and analyze the exploits programs, for each collected 319

exploits and their corresponding program, we scrutinize their 320

execution behaviors and potential consequences. we first use 321

a Python script to help automatically scan the designated 322

open source platform and to acquire relevant vulnerability 323

information, such as bug type, bug description, and exploits 324

programs. Then, upon collecting the above information, we 325

classify them into different bug types, such as memory cor- 326

ruption and memory leak issues, and we filter that collected 327

bug that may have missing exploits program. 328

In detail, we have collected a total of 260 exploits programs 329

in the wild, with a specific emphasis on the National Vulner- 330

ability Database (NVD), GitHub, and Google Forum. These 331

platforms are widely recognized in open-source communities 332



and contain a substantial number of Linux kernel vulner-333

abilities. Additionally, based on the collected information,334

we summarized eight types of kernel bugs. Our attention335

is particularly drawn to highly dangerous bugs capable of336

triggering system erroneous states, such as memory error,337

privilege leaks, and data races. By leveraging the collected338

programs, we can generate high-quality inputs and cover those339

code sections that Syzkaller may have failed to test before,340

thereby improving the fuzzing effectiveness.341

2) Syscall Extractor: Once we have collected the exploits342

programs, to construct the initial corpus, we first need to343

obtain their strace log and extract the corresponding ex-344

ecution trace. However, collected programs are distributed345

across different kernel versions with different compilation and346

execution dependencies, such as glibc version requirements,347

kernel configurations, and compile options. It is hard to simply348

compile and execute a collected program at a randomly given349

Linux kernel version and get its execution trace. Therefore, we350

need an automatic approach that can help SUNFLOWER find351

the most suitable Linux kernel for the collected programs to352

execute and extract the execution trace.353

To efficiently bridge the gap between incompatible kernel354

runtime environments with the exploit execution requirements,355

we propose to use a dispatcher that manages multiple targets356

Linux kernels with different versions and configurations to357

extract the execution trace. Specifically, we choose different358

kernel versions from Linux 3.x to the latest Linux 6.x as the359

extraction target. Furthermore, Syzkaller will conduct certain360

kernel configuration checks before testing. All target kernels361

are compiled with Syzkaller’s check configurations enabled. If362

a binary is compilable and executable, we will get the relevant363

strace log and send it back to the collector at the host.364
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Fig. 4: Diagram of Trace Generation. The trace generation
works at both the host machine and different versions of target
kernels. The dispatcher sends collected exploits to different
target kernels for compilation and execution till the execution
trace can extracted and collected by the collector.

The overall workflow is demonstrated as Figure 4. As we365

can see, the extraction process works at both the target kernel366

and the host machine. In the host machine, the dispatcher is367

in charge of sending collected exploits programs to the target368

kernel, and the collector is in charge of collecting the exe-369

cution trace. The dispatcher manages multiple Linux kernel,370

each with a different kernel version and configuration. After371

initiating the dispatcher, we boot the target kernel. Within the372

kernel, once it receives the programs, it first tries to compile373

the collected programs; if the compilation is successful, it then 374

executes the program and monitors the execution trace with 375

strace; if the program has any compile error or execution 376

error, SUNFLOWER will simply drop them and send to the next 377

target kernel, till we can compile and run the program. 378

3) Syzlang Generation: After obtaining the strace output 379

log from the exploits program using SUNFLOWER, the next 380

step is to construct the corpus by extracting and converting 381

the execution trace into Syzlang. This process is divided into 382

two primary steps. Initially, the output log is scrutinized to 383

eliminate any undesired information that could cause the trace 384

to fail Syzkaller’s semantic checks. This is crucial for cor- 385

recting malformed traces. Then, we can convert the execution 386

trace into desired Syzlang. 387

Algorithm 1: Syzlang Generation Algorithm
Input: SyscallTable: System Call Table
Input: SyscallRegex: Regex For System Call
Input: TracesLog: Original Strace Output Log
Output: SeqSpec: Extracted Trace Log

1 Procedure IsVaildTrace(SyscallTable, log)
2 Flag ← FALSE
3 for syscall ∈ SyscallTable do
4 if log.contain(syscall) &

log.match(SyscallRegex) then
5 Flag ← TRUE
6 return TRUE

7 return Flag

8 Procedure GenSPEC(SyscallTable, TraceLog)
9 TraceSeq← ∅

10 SeqSpec← ∅
11 for line ∈ TraceLog do
12 if IsVaildTrace(SyscallTable, line) then
13 TraceSeq.append(line)
14 else
15 TraceLog.remove(line)

16 SeqSpec← ConvertToSpec(TraceSeq)
17 return SeqSpec

We employ the Syzkaller’s syz2trace toolset. This 388

toolset is adept at transforming real-world execution traces into 389

an instantiated version of Syzlang, complete with arguments. 390

However, a significant challenge arises during this conversion. 391

Some system calls do not pass the Syzkaller’s semantic checks 392

successfully. The root of this issue lies in the strace output, 393

which contains extensive debug information, including details 394

about error operations or return values. While this information 395

aids in manual inspection, it hinders the Syzkaller’s trace 396

lexer’s ability to process the traces correctly. To overcome this 397

hurdle, we remove incompatible statements prior to generation. 398

A set of regular expressions (regex) is applied to represent 399

the execution information. When traces containing elements 400

incompatible with our regex expressions are encountered, we 401

omit the problematic parts. This step ensures that all execution 402

traces adhere to Syzkaller’s semantic standards. Following this 403

rigorous filtering and conversion process, the final corpus is 404

generated. This approach enables the acquisition of an initial 405



corpus that maintains a balance between clarity and compre-406

hensive detailing, crucial for exploring kernel vulnerability407

exploits with SUNFLOWER.408

The detailed description of our approach can be referred409

to as Algorithm 1. Specifically, in the first phase of trace410

conversion, we inspect each line in the execution trace log,411

as shown in lines 11 to 14. In Particular, we focus on two412

types of flags: whether the log contains any system call and413

whether the log matches our system call regular expression,414

as shown in lines 3 to 4. If we check that the current line415

of the log is indeed an execution trace, we will return a true;416

else, we return a false, and we will add the current execution417

log to the TraceSeq; else, we remove that from the TraceLog418

as shown in lines 3 to 6, and line 12 to 15. Once we have419

obtained the TraceSeq, we can call syz2trace to convert420

them into Syzlang.421

B. Runtime Corpus Prune422

Upon obtaining the Syzlang, we augment it to Syzkaller423

as the initial fuzzing corpus. However, since the collected424

exploits programs originated from different versions of Linux425

kernels, some of the extracted Syzlang may be incompatible426

with the target kernel due to incompatible glibc requirements427

or unsupported system calls, thereby introducing many mean-428

ingless crashes during the fuzzing and significantly affecting429

the fuzzing performance. Hence, we need to monitor the430

execution, update the corpus, and remove those Syzlang that431

are not supported on the target kernel.432

Algorithm 2: Corpus Prune Algorithm
Input: new crash
Input: crash count map
Input: crash list
Output: corpus

1 id = hash(new crash)
2 if id /∈ crash count map then
3 crash count map[id] = 1

4 else
5 crash count map[id]+ = 1

6 if crash count map[id] >
MAX CRASH COUNT then

7 if new crash.description ∈ crash list then
8 corpus.remove(new crash.prog)

The overall corpus prune process is depicted in Algo-433

rithm 2. Specifically, upon the acquisition of a new crash,434

we first generate a unique identifier, id, utilizing a hash435

function. If id is absent in the crash_count_map, it is436

added with an initial count of 1 (line 1). Conversely, if it437

is already present, the count is incremented (line 2). When438

the count for an id exceeds a predefined threshold, denoted as439

MAX_CRASH_COUNT, verification is conducted to ascertain if440

the description of the new crash resides in the crash_list.441

If it does, the corresponding program of the new crash442

is excised from the corpus. The MAX_CRASH_COUNT is443

summarized from our empirical practice and can dynamically444

adjust during testing.445

IV. IMPLEMENTATION 446

We implemented SUNFLOWER using Golang and Python, 447

in addition to some modifications on Syzkaller. First, SUN- 448

FLOWER uses a Python script to extract exploits from open- 449

source communities. Then, to collect the execution trace, SUN- 450

FLOWER implements a dispatcher that operates on both the 451

host and guest machines. The host machine is responsible for 452

starting different versions of the Linux kernel, while the guest 453

machine is tasked with executing each exploit and collecting 454

the execution trace during the process. Later, based on the 455

execution trace, SUNFLOWER modified parts of the Syzkaller 456

component to generate Syzlang, adapting it to older versions of 457

the Linux kernel. Finally, we modified the mutation module 458

of Syzkaller to automatically filter out seeds that frequently 459

trigger false-positive crashes during the fuzzing process. 460

SUNFLOWER by far has been integrated into Shuimuyulin’s 461

continuous fuzz testing pipeline, the Wfuzz Robot, to provide 462

fuzzing with high-quality test cases. Alterations within a par- 463

ticular segment of the kernel instigate the CI/CD (Continuous 464

Integration/Continuous Deployment) process, thereby serving 465

as a pivotal enhancement in the kernel fuzzing procedure. This 466

integration has been employed in the OS header vendor, UOS, 467

to facilitate continuous fuzzing of its product. 468

V. EVALUATION 469

To thoroughly assess the effectiveness of SUNFLOWER in 470

augmenting kernel fuzzing capabilities, we conducted a set 471

of experiments with an emphasis on whether SUNFLOWER 472

can facilitate kernel fuzzer in achieving higher code coverage 473

and detecting more previously unknown vulnerabilities. We 474

begin by showcasing previously unknown bugs discovered 475

by SUNFLOWER. Subsequently, we delve into specific case 476

studies of these unique bugs and discuss potential associated 477

risks. Lastly, we compare SUNFLOWER’s code coverage per- 478

formance against Syzkaller and Moonshine, highlighting its 479

proficiency in exploring a broader range of execution paths 480

and deeper kernel states. 481

A. Experiment Setup 482

The experiments were conducted on a server with a 128-core 483

CPU and 32 GiB of memory running Linux as the host kernel. 484

We chose Linux kernel v5.15, v6.1, v6.3.4, and v6.5 as our 485

test kernel targets. In detail, the Linux v6.5 is the latest release 486

version when we were conducting experiments. Each version 487

of the kernel uses the same compilation configuration, while 488

KCOV [14] and KASAN [15] options are enabled to collect 489

code coverage and detect memory errors. When setting up the 490

KCSAN [16] configuration, the same configuration is used in 491

the control test. 492

We used the original Syzkaller and Moonshine for com- 493

parison against Syzkaller augmented with SUNFLOWER. 494

Each experiment maintained consistent parameters, includ- 495

ing QEMU [17] setups, system call descriptions, and more. 496

Specifically, to strictly control the computational resources, 497

we started all experiments simultaneously and distributed the 498

resources evenly, including 2 cores and 2 GiB of memory 499



TABLE II: SUNFLOWER has discovered 25 previously unknown vulnerabilities, among which are 3 CVEs. The first column
shows the module in the Linux kernel that contains the vulnerability, and the rest of the columns illustrate the kernel versions,
the locations of the bugs, the type of the bugs, and their description, respectively.

Modules Versions Locations Bug Types Bug Descriptions
fs/ext4 v6.5 ext4 es insert extent use-after-free incorrect read task access causes use-after-free error
arch/x86/kvm v6.3.4 kvm vcpu reset logic error kvm virtual cpu reset process causes error
net/8021q v6.5 unregister vlan dev logic error invalid opcode at net/8021q/vlan.c causes error
fs/dcache v6.3.4 d add data race contention with read operation at d add function
net/ipv4 v6.3.4 netlink create memory leak unreleased memory objects causes leaks
net/ipv6 v6.5 ip6 tnl exit batch net logic error unregistering process of network devices results error
mm/slab v6.3.4 cache grow begin memory leak unreferenced object causes memory leak
net/can v6.5 raw setsockopt deadlock circular lock acquisition results in a deadlock
fs/proc v6.3.4 proc pid status data race data race invoking tasks causes system hang
mm/memory v6.3.4 copy page range data race unsynchronized access to shared data by threads results in error
fs/dcache v6.3.4 dentry unlink inode data race file unlinking operations results error
fs/proc v6.3.4 task dump owner data race unsynchronized thread access to shared data leads to error
fs/f2fs v6.3.4 f2fs truncate data blocks range out-of-bounds incorrect read operation results out-of-bounds error
fs/buffer v6.3.4 submit bh wbc logic error incorrect write operation causes invalid opcode error
fs/xfs v6.3.4 xfs btree lookup get block logic error invalid memory access results error
drivers/block/aoe v6.3.4 aoecmd cfg logic error jump labels operation causes kernel hang error
mm/mmap v6.3.4 do vmi munmap logic error incorrect instruction execution causes kernel panic
fs/udf v6.3.4 udf finalize lvid use-after-free invoking deprecated mand mount option results use-after-free bug
drivers/block v6.5 sock xmit use-after-free incorrect memory deallocation causes the use-after-free error
kernel/sched v6.3.4 run rebalance domains logic error incorrect scheduling operation causes RCU (Read-Copy-Update) error
block/bdev v6.3.4 blkdev flush mapping dead lock incorrect filesystem operation causes error
mm/swap v6.3.4 folio batch move lru / folio mark accessed data race unsynchronized thread access to shared data leads to error
lib/find bit v6.3.4 find first bit data race unsynchronized thread access to shared data causes error
mm/filemap v6.3.4 filemap fault / page add file rmap data race inconsistent read and write operations results data race
fs/ext4 v6.3.4 ext4 do writepages / ext4 mark iloc dirty data race unsynchronized thread access to shared data causes race contention

for each virtual machine. All tools use the same version of500

the Syzlang description. To accurately assess SUNFLOWER’s501

effectiveness and negate any architectural biases in the results,502

each set of experiments is repeated five times, and each503

experiment is executed over a period of 48 hours, and we504

calculate the average values as the results.505

B. Bug Finding506

To demonstrate the effectiveness of SUNFLOWER in finding507

real-world vulnerabilities, we deploy SUNFLOWER, Syzkaller,508

Moonshine to conduct fuzzing testing on the selected main-509

stream kernels.510

In our experiments, SUNFLOWER uncovered over 131 vul-511

nerabilities in total. This includes 25 previously unidentified512

vulnerabilities, of which 3 were assigned CVE IDs(CVE-513

2023-40791, CVE-2023-40792, CVE-2023-40793). Even with514

extensive testing by Syzkaller, Moonshine, and other kernel515

fuzzers using substantial computing resources, these vulner-516

abilities remained undetected. Notably, the majority of these517

vulnerabilities are situated within the core logic of the Linux518

kernel, encompassing modules like file systems, network, and519

memory management. Detailed descriptions can be found in520

Table II, which includes the specific kernel module, kernel521

version, location, bug type, and bug description.522

The ability of SUNFLOWER to identify previously unknown523

vulnerabilities is primarily due to the fact that the system524

call sequences in the corpus are sourced from previously525

verified real-world kernel exploits, which were not discovered526

by any automated kernel fuzzing tools. Leveraging Syzkaller’s527

mutation and scheduling strategies, SUNFLOWER is capable528

of mutating system call sequences that are more valuable529

than those generated by automated approaches. This enhances530

code coverage and directs the exploration toward discovering 531

vulnerabilities in more linux kernel error-prone modules. 532

C. Case Study 533

In this section, we’ll explore the root cause and analyze the 534

potential implications of these detected vulnerabilities. 535

Case Study 1. Listing 1 depicts a use-after-free vulnerabil- 536

ity discovered in the ext4 file system module of Linux kernel 537

v6.5, which has been fixed by corresponding maintainers. 538

This bug is in function ext4_es_insert_extent() 539

within the ext4 file system, responsible for adding in- 540

formation to an inode’s extent status tree. When this 541

function is invoked, memory is allocated to the es1 542

and es2 variables. As the kernel program progresses, it 543

reaches the __es_remove_extent() function (Line 4), 544

which calls ext4_es_insert_extent() function to in- 545

sert es1 to es tree. However, a problem arises at Line 546

10, which calls ext4_es_insert_extent() to in- 547

sert es2 to es tree. Internally, this action prompts the 548

ext4_es_try_to_merge_right() function to free es1 549

variable by ext4_es_free_extent(). Consequently, by 550

the time the program reaches Line 24, where it attempts 551

to check if es1->es_len is zero, it triggers the use- 552

after-free, as the memory space of es1 has been freed 553

before but is reaccessed. The patch addresses this is- 554

sue by checking the status of es1 or es2 immediately 555

after invoking either the __es_remove_extent() or 556

__es_insert_extent(). This ensures that the use-after- 557

free doesn’t arise if either es1 or es2 is freed. 558

Case Study 2. Listing 2 illustrates a logic vulnerability 559

discovered in the memory management module of Linux 560

kernel v6.5. This vulnerability is triggered by SUNFLOWER 561

and has been fixed. 562



1 --- a/fs/ext4/extents_status.c
2 +++ b/fs/ext4/extents_status.c
3 @@ -878,23 +878,21 @@ void

ext4_es_insert_extent(struct inode *inode,
ext4_lblk_t lblk,

4 err1 = __es_remove_extent(inode, lblk, end,
NULL, es1);

5 if (err1 != 0)
6 goto error;
7 + if (es1 && !es1->es_len)
8 + __es_free_extent(es1);
9

10 err2 = __es_insert_extent(inode, &newes, es2);
11 if (err2 == -ENOMEM &&

!ext4_es_must_keep(&newes))
12 err2 = 0;
13 if (err2 != 0)
14 goto error;
15 + if (es2 && !es2->es_len)
16 + __es_free_extent(es2);
17
18 if (sbi->s_cluster_ratio > 1 &&

test_opt(inode->i_sb, DELALLOC) &&
19 (status & EXTENT_STATUS_WRITTEN ||
20 status & EXTENT_STATUS_UNWRITTEN))
21 __revise_pending(inode, lblk, len);
22 -
23 - /* es is pre-allocated but not used, free it.

*/
24 - if (es1 && !es1->es_len)
25 - __es_free_extent(es1);
26 - if (es2 && !es2->es_len)
27 - __es_free_extent(es2);

Listing 1: This patch fixes a use-after-free vulnerability in ext4
file system. Line 24 attempts to access es1->es_len after
this variable’s memory space has been freed in Line 10.

1 struct vm_area_struct *vma_merge(struct
vma_iterator *vmi, struct mm_struct *mm,
struct vm_area_struct *prev, ...)

2 {
3 ...
4 /* Verify some invariant that must be enforced

by the caller. */
5 VM_WARN_ON(prev && addr <= prev->vm_start);
6 VM_WARN_ON(curr && (addr != curr->vm_start ||

end > curr->vm_end));
7 VM_WARN_ON(addr >= end);
8 ...
9 }

10 static int mbind_range(struct vma_iterator *vmi,
struct vm_area_struct *vma, struct
vm_area_struct **prev, ...)

11 {
12 ...
13 merged = vma_merge(vmi, vma->vm_mm, *prev,

...);
14 if (merged) {
15 *prev = merged;
16 return vma_replace_policy(merged, new_pol);
17 }
18 ...
19 *prev = vma;
20 return vma_replace_policy(vma, new_pol);
21 }
22 SYSCALL_DEFINE4(set_mempolicy_home_node, ...)
23 {
24 ...
25 for_each_vma_range(vmi, vma, end) {
26 old = vma_policy(vma);
27 /* fix: update prev pointer here:

prev = vma */
28 if (!old)
29 continue;
30 ...
31 err = mbind_range(mm, vmstart, vmend,

new);
32 ...
33 }
34 ...
35 }

Listing 2: The code snippet of a logic error. The function
set_mempolicy_home_node() inconsistently bypasses
mbind_range(), leading to potential issues in updating
VMA pointers when no VMA policy is present.

In the Linux kernel’s memory management subsystem, 563

SUNFLOWER identified an inconsistency in the behavior of 564

the mbind_range() function. Specifically, the current im- 565

plementations that utilize mbind_range() anticipate that it 566

will not update the pointer referencing the preceding Virtual 567

Memory Area (Line 19) through its internal sanity check 568

(Line 5-7). Nevertheless, during our fuzzing, we observed that 569

the set_mempolicy_home_node() function (Line 28- 570

29) bypasses the invocation of mbind_range() in scenarios 571

where a VMA policy is absent. To rectify this discrepancy, 572

kernel maintainers propose the corresponding fix: the pointer 573

to the preceding VMA should be updated before proceeding 574

with the iteration over the VMAs in cases where the policy is 575

not present (Line 27, prev = vma). This adjustment ensures 576

consistency and meets the expectations of the functions relying 577

on mbind_range(). The Syzlang SUNFLOWER extracted 578

contains deep code logic and, therefore, allows Syzkaller to 579

cover such error states. 580

D. Coverage Improvement 581

To demonstrate the effectiveness of SUNFLOWER in explor- 582

ing a broader range of execution paths and deeper kernel 583

states, we present the code coverage statistics in compar- 584

ison with existing state-of-the-art kernel fuzzers, including 585

Syzkaller and Moonshine. Four versions of the Linux kernel 586

are chosen for the experiment, including v5.15, v6.1, v6.3.4, 587

and v6.5. We selected Linux v6.5 because it is the latest 588

kernel version at the time of our experiments. At the same 589

time, we choose v6.3.4 to compare the coverage improvement 590

effect that exists between different state kernel versions, while 591

Linux v6.1 and Linux v5.15 serve as the two featured release 592

versions widely adopted by numerous distributions. The Qemu 593

simulation environments utilized by all fuzzer tools maintain 594

the same parameter configurations, such as CPU core number, 595

memory storage size, and so on. Finally, each testing campaign 596

undergoes five repetitions, and we present the ultimate average 597

value obtained over a forty-eight-hour period. 598

We evaluated code coverage statistics for the Linux ker- 599

nel using three seed scenarios: generated exploit seeds by 600

SUNFLOWER, no seeds, and seeds produced by Moonshine 601

based on Syzkaller. Syzkaller can test the Linux kernel through 602

a definition of a set of pseudo-system calls. These pseudo- 603

system calls can connect the information interaction between 604

user mode and kernel mode, thereby collecting coverage data 605

of the accessed kernel modules. To reduce the randomness of 606

the experiment, we ran five groups of experiments for each 607

kernel version and set the coverage statistics to be sampled 608

every ten seconds during each experiment. The average value 609

of the sampled data in several executions of each Syzkaller 610

was calculated as comparative experimental data. 611

Figure 5 illustrates the comparison of branch coverage 612

among Syzkaller, Moonshine, and SUNFLOWER. Specifically, 613

all tools show growth in the first 24 hours. SUNFLOWER 614

outperforms Syzkaller and Moonshine by varying degrees in 615

terms of code coverage over the same timeframe. However, 616

post this period, while Syzkaller and Moonshine’s coverage 617
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(c) Coverage on Linux v6.3.4
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(d) Coverage on Linux v6.5

Fig. 5: Branch coverage of Syzkaller, Moonshine, and SUN-
FLOWER on the Linux versions 5.15, 6.1, 6.3.4, and 6.5. After
48-hours of testing, SUNFLOWER consistently demonstrated
the highest coverage for all versions.

growth slows and nears saturation, SUNFLOWER continues to618

progress at a faster rate. Throughout the forty-eight-hour ex-619

periment, we observed that SUNFLOWER consistently achieved620

the highest coverage rate. This is because SUNFLOWER utilizes621

a corpus initialized with kernel vulnerability exploits, allowing622

the fuzzer to reach deeper kernel code more efficiently. In con-623

trast, Syzkaller starts with a random sequence of system calls,624

often missing deeper vulnerability logic. Although Moonshine625

leverages system call sequences from real programs, many of626

these sequences fail to trigger kernel vulnerabilities. Conse-627

quently, SUNFLOWER performs better in improving coverage628

and exploring the kernel code space.629

TABLE III: Coverage statistics of SUNFLOWER, Syzkaller, and
Moonshine on Linux over 48 hours. SUNFLOWER achieves
higher coverage on all kernel versions.

Version SUNFLOWER Syzkaller Moonshine

v5.15 133744 126564(+5.7%) 128546(+4.0%)
v6.1 144336 136442(+5.8%) 128120(+12.7%)

v6.3.4 136948 127333(+7.6%) 126635(+8.1%)
v6.5 154365 129709(+19.0%) 130576(+18.2%)

Overall 142348 130012(+9.5%) 128469(+10.8%)

Table III provides a detailed breakdown of the branch630

coverage statistics for Syzkaller, Moonshine, and SUNFLOWER631

over a forty-eight hours period. Compared to Syzkaller, SUN-632

FLOWER achieves coverage improvements of 5.7%, 5.8%,633

7.6% and 19.0% on experiments with versions 5.15, 6.1,634

6.3.4 and 6.5, respectively. Against Moonshine, SUNFLOWER635

shows enhancements of 4.0%, 12.7%, 8.1% and 18.2% for636

the same versions. Overall, SUNFLOWER achieves 9.5% and637

10.8% higher coverage than Syzkaller and Moonshine, respec- 638

tively. In essence, our data underscores that SUNFLOWER, by 639

leveraging past kernel vulnerability exploits as corpus seeds, 640

consistently outperforms in achieving higher coverage. 641

VI. RELATED WORKS 642

A. Fuzz Testing 643

Fuzz testing [1], [18], [19], also referred to as fuzzing, 644

stands out as an automated program testing technique, has 645

located a wide range of vulnerabilities among operating sys- 646

tems, communication protocols, and diverse libraries. A fuzzer 647

is designed to navigate through the code space of target 648

programs using randomly generated test cases and employing 649

a variety of sanitization techniques. This approach enables it to 650

adeptly identify a range of bug types, from memory corruption 651

to concurrency issues, thereby enhancing software reliability 652

and security. Fuzzers can generally be categorized into two 653

primary types: generation-based fuzzers and mutation-based 654

fuzzers [20], [21]. Generation-based fuzzers, such as the 655

well-known protocol fuzzer Peach, leverage predefined input 656

specifications to guide the generation of high-quality test 657

cases. For instance, Peach [22] utilizes protocol specifications 658

(pit files) that encapsulate detailed data and state transition 659

descriptions, enabling it to generate highly structured input to 660

thoroughly test various protocol implementations. Conversely, 661

mutation-based fuzzers, like the most famous and state-of-the- 662

art fuzzer AFL [23], utilize different metrics as guidance, such 663

as code coverage, to steer the fuzzing process. For instance, 664

it prioritizes inputs that trigger new code coverage, allocating 665

them a higher likelihood of being executed and mutated in 666

subsequent iterations. Numerous works have explored various 667

mutation strategies and execution methods to enhance the 668

efficacy of this fuzzing approach [24], [25]. 669

Given the proven effectiveness of fuzzing and the paramount 670

importance of kernel security, numerous researchers have 671

ventured into amalgamating fuzzing with kernel testing to 672

fortify kernel robustness [26]. Syzkaller, a state-of-the-art 673

kernel fuzzer, employs Syzlang as fuzzing input to emulate 674

authentic execution workloads, thereby testing various kernel 675

modules, and has successfully unearthed thousands of kernel 676

bugs over the years. The complexity of kernel logic has spurred 677

innovations like HFL [27], which melds symbolic execution 678

and fuzzing. By calculating paths that are challenging to reach, 679

HFL can more comprehensively cover code sections that are 680

seldom executed. Moonshine, on the other hand, collects real- 681

world execution traces from different programs and proposes 682

a distillation algorithm to construct the initial corpus, enabling 683

Syzkaller to generate a higher-quality payload. Moreover, 684

Healer [28] utilizes relation learning to enhance testing effi- 685

ciency, analyzing the relationship between two adjacent system 686

calls within a system call sequence to generate input that 687

probes deeper into the kernel’s code logic. KSG [29] uses the 688

ebpf technique to extract kernel system call’s argument type 689

and value constraint, using this extract information to generate 690

corresponding Syzlang as the initial corpus to test kernel’s 691

specific modules. Additionally, there have been concerted 692



efforts to augment Syzkaller’s testing efficiency. For instance,693

Horus [30] enhances data transfer processes by using the694

shared memory to transfer fuzzing-related data like coverage695

and test input, thereby eliminating the transmission overhead696

inherent in Syzkaller’s RPC communication mechanism.697

Different from previous work in terms of kernel fuzzing,698

SUNFLOWER proposes using previously detected bugs as the699

initial corpus; this allowed Syzkaller to generate more complex700

input to test deep into the kernel’s code logic and be capable701

of testing those error-prone code sections more frequently,702

thereby improving the overall fuzzing efficiency.703

B. Corpus Generation704

The corpus, embodying a collection of high-quality test705

cases, holds paramount importance in fuzzing, serving as a706

pivotal element that can be utilized both before and during707

the fuzzing process to facilitate more thorough testing of the708

target program [31]. Constructing a corpus before fuzzing709

typically involves collecting payloads that adhere to the input710

specifications of the target program [32], [33].711

In the realm of compiler fuzzing, Csmith [34] stands out as712

a notable tool that generates random C programs, which are713

utilized to test compilers. by ensuring that generated programs714

are well-defined according to the C standard, providing a ro-715

bust mechanism for identifying compiler bugs without manual716

triage of crashes to determine whether they expose genuine717

compiler bugs or merely undefined behaviors. Furthermore,718

the EMI [35], [36] strategically utilizes real-world C pro-719

grams, transforming them into equivalent variants to facilitate720

differential testing across various compilers. Specifically, by721

generating these semantically identical but syntactically varied722

programs, EMI effectively exposes discrepancies and potential723

vulnerabilities in compiler behaviors, thereby enhancing com-724

piler testing methodologies.725

Despite that, both SUNFLOWER and the above work are726

designed to provide fuzzers with high-quality input. However,727

different from the compiler fuzzing that generates C programs728

as the initial corpus, SUNFLOWER mainly uses the collected729

C program as input and extracts their corresponding execution730

traces to form the Syzlang for Syzkaller.731

VII. LESSON LEARNED732

A. Initial Corpus Construction733

Currently, the initial corpus constructed by SUNFLOWER,734

particularly when derived from actual vulnerabilities observed735

in the wild, holds substantial significance in kernel fuzzing.736

This corpus, enriched with practical and historically prob-737

lematic data, serves a dual purpose: it acts as a robust input738

reservoir and guides the kernel fuzzer toward exploring and739

scrutinizing deeper, more complex logical structures that have740

a higher propensity to trigger vulnerabilities. Moreover, it741

can help the fuzzer to avoid exploring some superficial logic,742

thereby optimizing its path and conserving valuable computa-743

tional resources. However, the current corpus we constructed744

by SUNFLOWER still suffers from version incompatibility,745

as PoC programs and their corresponding system call traces746

from older versions of Linux can no longer be compatible 747

with current versions of the Linux kernel. Consequently, an 748

approach to collecting exploits and converting them into a 749

valid initial corpus becomes paramount, especially focusing on 750

those that have eluded detection by tools like Syzkaller. In the 751

future, we can convert these incompatible traces by extracting 752

their execution trace, transferring the traces to newer versions 753

of Linux, and then generating the corresponding corpus. 754

B. Kernel PoC program reproduction 755

In the process of using SUNFLOWER to construct the 756

corpus, it is not an easy task to reproduce and analyze the 757

kernel vulnerabilities, particularly those discovered in real- 758

world scenarios, which are often fraught with complexities. 759

This process requires identifying vulnerabilities and analyzing 760

their callback traces. In our empirical research, we observed 761

that reproducing vulnerabilities is made even more difficult 762

by the diverse hardware configurations used in real-world 763

deployments, each introducing unique variables. Moreover, 764

the wide range of software environments and usage scenarios 765

further complicates this already intricate task. Furthermore, 766

diverse PoC programs showcase varying behaviors, and some 767

provoke non-deterministic actions during the reproduction 768

phase. Consequently, this complicates the consistent recreation 769

of specific conditions that trigger particular bugs. At the same 770

time, the lack of detailed information and context about these 771

vulnerabilities also exacerbates the complexity of reproducing 772

vulnerabilities. In future research, the work on reproducing and 773

analyzing vulnerabilities can not only involve more technical 774

research from the perspective of software and hardware envi- 775

ronment adaptation but also detailed vulnerability disclosure 776

documents, comprehensive version control, and robust industry 777

collaboration. These factors will greatly reduce the complexity 778

of reproducing and analyzing these vulnerabilities. 779

VIII. CONCLUSION 780

In this paper, we introduce SUNFLOWER, an initial corpus 781

generator designed to boost kernel fuzzer performance by 782

leveraging existing exploits programs as its corpus. Sourcing 783

exploits from open-source communities, SUNFLOWER features 784

a unique automatic version dependency dispatcher and a 785

runtime corpus prune mechanism, allowing it to compile and 786

execute enhanced seeds across varying version dependencies. 787

Using SUNFLOWER, we can effectively integrate real-world 788

vulnerabilities into traditional kernel fuzzers’ testing process, 789

enabling them to cover previously uncovered code sections 790

and improve the fuzzing performance. 791

We evaluated the performance of SUNFLOWER on several 792

Linux kernel versions. Compared to Syzkaller and Moonshine, 793

SUNFLOWER enhances branch coverage by 9.5% and 10.8%, 794

respectively. Furthermore, SUNFLOWER successfully found 25 795

previously unknown vulnerabilities, among which are 3 CVEs. 796

The above results demonstrate the ability of SUNFLOWER 797

to explore kernel code space, thus helping fuzzers discover 798

previously unknown vulnerabilities. 799
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