
Go-Sanitizer: Bug-Oriented Assertion Generation
for Golang

Cong Wang∗, Hao Sun∗, Yiwen Xu∗, Yu Jiang∗, Huafeng Zhang†, Ming Gu∗
∗ School of Software, Tsinghua University, China

† Software Quality Assurance Group, Huawei Technologies, China

Abstract—Go programming language (Golang) is widely used,
and the security issue becomes increasingly important because
of its extensive applications. Most existing validation techniques,
such as fuzz testing and unit testing, mainly focus on crashes
detection and coverage improvements. However, it is challenging
for test engines to perceive common program bugs such as loss
of precision and integer overflow.

In this paper, we propose Go-Sanitizer, an effective bug-
oriented assertion generator for Golang, which is able to achieve
a better performance in finding program bugs. Firstly, we
manually analyze the Common Weakness Enumeration (CWE)
and summarize the applicabilities on Golang. Secondly, we
design a generator to automatically insert several bug-oriented
assertions to the proper locations of the target program. Finally,
we can utilize the traditional validation techniques such as fuzz
and unit testing to test the programs with inserted assertions,
and Go-Sanitizer reports bugs via the failures of assertions.
For evaluation, we apply Go-Sanitizer to Badger, a widely-
used database software, and successfully discovers 12 previously
unreported program bugs, which can not be detected by pure
fuzzer such as Go-Fuzz or unit testing methods.

Index Terms—Golang, program bug, assertion generation

I. INTRODUCTION

The Go programming language (Golang) is widely used
in different areas, such as micro-services for mobile appli-
cations [1], [2], blockchain systems [3], [4], etc. The security
of Golang becomes increasingly important because bugs in
those applications would result in failure of the whole system
or even lead to huge loss of money.

Software testing methods, such as fuzz testing and unit
testing, are regarded as effective techniques to find bugs in
programs [5], [6]. Fuzz testing is to automatically generate
different inputs to trigger the system crashes, and there are
many fuzzers such as Go-Fuzz playing important roles in
practical application [7]. Unit testing is also applied to ensure
the program correctness with predefined test oracles and
mainly focuses on the coverage improvements.

Those techniques work well in their context, but cannot deal
with the program bugs [8] such as precision loss of float num-
bers and integer overflow. For example, as the function “main”
presented in Listing 1, we use an equal comparison (Line.10)
to decide whether to go inside the statements between Line.11-
13. However, this comparison is based on two float numbers
“a” and “b”. Due to the precision loss, the two variables are
misunderstood as unequal ones. Obviously, the behavior of the
program can not match the expectations. Neither fuzz testing
nor unit testing could detect this issue because the program

would not crash during fuzzing or trigger oracle violation
during unit testing.

1 // file: prec_loss.go
2 func main() {
3 x := 74.96
4 y := 20.48
5 b := x - y
6 log.Println(b) // 54.47999999999999
7 a := 54.48
8
9 log.Println(a == b) // false

10 if (a == b) {
11 // Intend to do something.
12 // Unfortunately, the branch can not be
13 // executed, due to precition loss issues
14 }
15 }

Listing 1: Bug of Precision Loss.

To fill this gap, we aim to design an approach to generate
bug-oriented assertions for Golang. Let p denotes a user-
input Golang package. Then our task is solved by working
out asserts(p) = {assert1, ..., assertn}, which is a set of
bug-oriented assertions. A bug-oriented assertion is a pro-
gram assertion statement specially designed for bug detection
(especially those can not trigger crashes). Once an assertion
fails, it means that there could be a corresponding bug at
the location of programs. However, assertion generation is
challenging from two major perspectives:
• Bug Categories. Golang has its own syntax and seman-

tics. Previous program bug or weakness classifications,
such as Common Weakness Enumeration (CWE) [8], are
not fully applicable.

• Automatic Generation. Identifying the assertion pattern
and the location for the corresponding assertion are
hard work, and it is time-consuming and error-prone to
accomplish this task manually.

In this paper, we propose Go-Sanitizer, a bug-oriented
assertion generator for Golang, which could be able to achieve
a better performance in finding program bugs when accompa-
nied with the traditional validation methods. For the above two
challenges, firstly, we analyze program bugs from CWE and
select the ones which are applicable in Golang. We further
design different assertion patterns for these applicable bug
types. Secondly, we implement a user-friendly assertion gener-
ator to generate bug-oriented assertions, including the pattern
initialization and the location identification. Go-Sanitizer cur-

rently supports 9 types of program bugs. Finally, we utilize
traditional validation techniques such as fuzz and unit testing
techniques to validate the programs with assertions.

For evaluation, we apply Go-Sanitizer on Badger[9], a
database software widely-used in industrial applications, such
as PlayNet, Coyote, etc. Go-Sanitizer successfully discovers
12 unreported bugs in Badger’s code base, which can hardly be
discovered by pure fuzz or unit testing methods. All these bugs
have been confirmed as real problems with manual validation.
The main contributions of this paper are:
• We propose a bug-oriented assertion generator for

Golang, named Go-Sanitizer 1, which are helpful to detect
program bugs.

• We present a series of Golang bug categories and the
corresponding test oracle related assertion patterns.

• We apply Go-Sanitizer to real-world application, and
discover many previous unknown bugs 2.

The rest of this paper is organized as follows. Section.II
presents the related work. Section.III elaborates on our ap-
proach of assertion generation, including the bug category
and pattern definition, assertion initialization and insertion.
Section.IV presents the experimental results. Section.V makes
a conclusion of our work.

II. RELATED WORK

Software Testing: In practice, software testing such as
fuzz testing and unit testing has been widely used for security
and quality assurance. Fuzz testing has been regarded as
an effective technique to detect vulnerabilities of programs.
American Fuzzy Lop (AFL) [10], considered as a leading
fuzzing tool, has found a number of vulnerabilities in programs
based on its coverage-guided method. To further improve the
performance, researchers have proposed several optimizations
based on symbolic execution and taint analysis [11], [12]. As
for Golang fuzzers, Go-Fuzz [7] is a representative tool, and is
effective in finding bugs, especially in a number of Golang’s
official packages. Unit testing is another common method to
check the correctness of programs. For example, Golang has
its unique grammar rules for unit testing programs.

Assertion Generation: For assertion generation, Wang
et al. propose assertion recommendation for C programming
language [13], [14]. They detect program weaknesses via
well-defined assertions. Yamaguchi et al. propose an effective
approach to discover missing checks in source code [15]. They
statically scan source code to accurately identify real missing
checks which are security-critical.

Main Differences: Go-Sanitizer mainly focuses on pro-
gram bug categories which do not trigger execution crashes.
To the best of our knowledge, Go-Sanitizer is the first bug-
oriented assertion generator for Golang, and can be applied to
improve the performance of traditional software testing such
as fuzz testing and unit testing.

1We have made the tool open source. The source code of Go-Sanitizer can
be accessed by https://github.com/wangcong15/Go-Sanitizer

2We also share the project inserted with assertions, which can be accessed
by http://congwang92.cn/badger-with-asserts.zip

III. GO-SANITIZER DESIGN

A. Overall Framework

Fig. 1 shows the overall framework of Go-Sanitizer. It
takes the Golang source code as input. Firstly, in “Assertion
Recommendation” phase, we do syntax check and static scan
on the code. Then we utilize bug-oriented assertion patterns
to identify the abstract syntax tree (AST) of the code. These
assertion patterns are designed based on characteristics of
program bugs. The bugs do not trigger code crashes but are
able to be detected by specific assertions (like “precision
loss” described above). Then our assertion generator works
out a list of assertions, containing information of inserted
positions, assertion expressions and bug categories. Secondly,
in “Candidate Pick” phase, users can read assertions in detail
(file, location, assertion expression, and reason). They can
make decisions on which assertions to reserve before inerting
them into programs. Finally, in “Validation Integration” phase,
we firstly execute unit testing. Then we integrate Go-Fuzz,
a state-of-the-art fuzz testing tool for Golang. We record the
situation when an inserted assertion fails. Depending on testing
results, Go-Sanitizer infers a bug report.

1 // file: regexp_without_anchors.go
2 func getPathFromInput() string {
3 // suppose we input "../../etc/passwd"
4 return "../../etc/passwd"
5 }
6
7 func main() {
8 pat := "/[A-Za-z0-9]+/"
9 u, _ := user.Current()

10 home := u.HomeDir // home="/home/root"
11 p := getPathFromInput()
12 if flag, _ := regexp.MatchString(pat, p);

↪→ flag == true {
13 // attackers can bypass the check to read

↪→ security messages
14 filePath := path.Join(home, p)
15 if b, err := ioutil.ReadFile(filePath);

↪→ err == nil {
16 fmt.Println(string(b))
17 }
18 }
19 }

Listing 2: A bug of regular expression without anchors.

Let us take the example in Listing. 2 to illustrate the
whole procedure. The code snippet may suffer from a security
problem because of regular expression without anchors. In
detail, the check of regular expression (Line.12) on user-
provided strings is not strict enough. When attackers feed
“../../etc/passwd” as input (Line.4), the function actually ex-
poses security-critical data. The program bug, in this case,
corresponds to “Regular Expression without Anchors” (CWE-
777). Go-Sanitizer can find the situation and advise users to
insert an assertion to check that the spliced file path (Line.14)
is not outside expectations. Then we use Go-Fuzz to test the
“main” function, and successfully trigger an assertion failure.
As a result, the security-critical bug in this code snippet will
appear in Go-Sanitizer’s report.

Assertion Recommend Candidate Pick Validation Integration

weakness
report

golang
code

Syntax Check

AST Generate

Pattern Match

Static Scan

assertion

Assertions

User Choice

Auto-Insertion

Unit Test

Seed Prepare

Fuzz Test

code with
assertions

Fig. 1: Overall Framework, including assertion recommend, candidate pick and validation integration.

ID Weakness Name Category Assertion Template
128 Wrap-around Error Incorrect Calculation AssertValEq(A, B)
190 Integer Overflow Incorrect Calculation AssertOverflow(A, B, A+B)
191 Integer Underflow Incorrect Calculation AssertUnderflow(A, B, A-B)
785 Use of Path Manipulation Function without Maximum-sized Buffer Incorrect Access AssertGte(len(A), len(B))
466 Return of Pointer Value outside Expected Range Incorrect Access AssertNNil(A)
824 Access of Uninitialized Pointer Incorrect Access AssertNNil(A)
478 Missing Default Case in Switch Statement Incorrect Comparison AssertIn(A, [B, C, ...])

1077 Floating Point Comparison Incorrect Operator Incorrect Comparison AssertPresion(A, B)
777 Regular Expression without Anchors Incorrect Comparison AssertStrNotIn(A, Blacklist)

Fig. 2: CWEs’ Applicability in Golang.

B. Bug-oriented Assertion Generation

Golang has its particular restricts and rules in underlying
design. Previous program bug classifications, such as Common
Weakness Enumeration (CWE) [8], are not fully applicable to
Golang. Thus, we analyze the program bugs and design the
corresponding assertion patterns.

As shown in Fig. 2, we choose 9 bug types. To better
illustrate the applicabilities of these bugs in Golang, we have
built a test-suite to facilitate understanding, which can be
accessed online 3.

Moreover, we design patterns to generate assertions. For
example, “Regular Expression without Anchors” mentioned
above, is CWE-777 bug. Notes that Column “Assertion Tem-
plate” is the template to format the expressions of assertions.
An assertion calls a checking function to validate the con-
ditions. For example, the assertion of CWE-824 is to ensure
that the pointer “A” is not nil (Golang uses “nil” instead of
“null”). Besides, Golang does not have the grammar of assert
statements, thus we also design an assertion library 4 to check
all these assertions.

C. Bug-oriented Assertion Insertion

Go-Sanitizer applies a constraint-based approach to match
bug types with source code and identify where to insert
the assertions. It is worth mentioning that a constraint is a

3https://github.com/wangcong15/cwe-testsuite-golang
4https://github.com/wangcong15/goassert.

condition for equality matching on an abstract syntax tree.
The definitions of our constraints for each bug type are:

• scope=ast.type: scope under sub-trees of a specific type.
• save node.name if node.type=ast.type: to find a node of

a specific type, and record the variable name.
• node1.name=node2.name: validate equality of names.
• ..., etc.

Besides, we design a structure of assertions for each bug
type. The structure includes file, location, expression, and
reason. After preparing these, we present our insertion al-
gorithm in Algo. 1. The algorithm takes a Golang package
and the constraints of bugs as input. The algorithm checks
the constraints of each bug type (Line.5-10). For those match
all the constraints, we record the information (Line.11-12) and
append it into the list of assertion candidates (Line.13). Finally,
this algorithm works out a list of assertion candidates.

D. Valiadation Integration

After we work out bug-oriented assertions, users can read
assertions in detail. To validate these assertions, we integrate
traditional testing methods. Go-Fuzz [7] is a state-of-the-art
fuzz testing tool for Golang. It tests Golang projects dynam-
ically guided by coverage. We modify Go-Fuzz to record the
situation when our inserted assertion fails. Meanwhile, we
also execute the unit testing scripts to validate these inserted
assertions as well. Depending on testing results, Go-Sanitizer
infers a bug report.

Algorithm 1 Assertion Generation

Input:
A golang package, p
Constraints and assertion templates of weakness, listw

Output:
List of assertion, listassert

1: listassert ⇐ a empty list
2: listsrc ⇐ GetSourceFiles(p)
3: for each file ∈ listsrc do
4: root ⇐ root node of file’s AST
5: for each w ∈ listw do
6: for each c ∈ w.constraints do
7: if MatchFails(root, c) then
8: Break, Goto STEP 5
9: end if

10: end for
11: loc, expr ⇐ GetInfo(w)
12: assert ⇐ {file, loc, expr, w.reason}
13: listassert ⇐ listassert ∪ assert
14: end for
15: end for
16: return listassert

IV. EVALUATION

During the experiment, we answer the following questions.
Q1: Is the approach effective in finding bugs: We should

validate that our approach can discover real problems, espe-
cially those problems missed by traditional testing methods.

Q2: How is the accuracy of these assertions: A good
approach is not only effective, but also accurate. Thus, we
need to evaluate the false positive rate of bug detection.

Q3: How much burden do assertions bring in: Although
assertions are simple code statements, they still bring burden
(extra checks). Thus, we need to evaluate its burden.

A. Experiment Setup

Platform: All experiments are conducted on a Macbook
Pro (Intel Core i5 2.7 GHz, 8 GB 1867 MHz DDR3), and the
Golang version is 1.12.4 darwin/amd64.

ID Package Path KloC File
1 badger . 12.019 39
2 y y 1.008 13
3 pb pb 2.024 1
4 skl skl 0.865 3
5 trie trie 0.108 2
6 table table 1.536 5
7 options options 0.007 1
8 main badger 0.022 1
9 cmd badger/cmd 1.419 9

10 main integration/testgc 0.195 1
Total - - 19.203 75

TABLE I: Information of Badger’s Source Code

Data Sets: We choose Badger [9] to conduct experiments.
Badger is an efficient and persistent key-value store. As a fast
database software, Badger is widely used in industrial applica-
tions. Table. I shows the information of Badger’s source code
(commit ID: c32e701). Column “KloC” means a thousand
lines of code. Golang projects are organized by “packages”,
so Column “Package” means the name of code package. For
example, the first package “badger” is located in the root path
of the project, which contains 12,019 lines of code (Blank lines
and comments are not included). Then, we do experiments on
these code packages to discover program bugs, and solve the
three industrial questions above.

Data Collection: For Q1, we utilize Go-Sanitizer to
generate assertions and test the code with Go-Fuzz and unit
testing scripts. Then we collect crash logs, which are triggered
by our bug-oriented assertions. For Q2, we manually check the
syntax correctness and review the code to validate whether a
crash is a false positive. Notes that a false positive means a
situation when crashes do not occur on a bug. For Q3, we
repeat running Badger’s unit testing code to compare the time
consumption. Finally, we can use the excess time to evaluate
the burden brought by our assertions.

B. Experiment Results

Q1: Is the approach effective in finding bugs: Firstly, we
present the data of assertions. We use Go-Sanitizer to insert
assertions into the source code of Badger. As shown in Fig. 3,
we generate 48 assert statements in total. For example, we
insert 24 assertions in the package with ID 1, which is package
“badger” in the root path. Among these packages, P5, P7, and
P8 are free of assertions. Code amounts are small in these
packages, and Go-Sanitizer does not match any patterns to
insert bug-oriented assertions.

Fig. 3: Asserts: 48 assertions are inserted in total.

In addition, Fig. 4 shows the number of assertions for each
bug type. C190 (Integer Overflow or Wraparound) has the
maximum number of assert statements, which means, we have
instrumented assertions into 11 spots to check integer overflow

ID PID CWE File Line Assertion #Fuzz #Unit #Go-Sanitizer
1 9 191 badger/cmd/bank.go 228 AssertUnderflow(highTs, lowTs, highTs-lowTs) × × X
2 9 190 badger/cmd/bank.go 243 AssertOverflow(lowTs, highTs, lowTs+highTs) × × X
3 6 478 table/iterator.go 78 AssertIntIn(whence, []int{origin, current}) × × X
4 6 478 table/iterator.go 279 AssertIntIn(whence, []int{origin, current}) × × X
5 6 190 table/table.go 205 AssertOverflow(off, sz, off+sz) × × X
6 6 191 skl/arena.go 67 AssertUnderflow(maxHeight, height, maxHeight × × X

-height)
7 6 191 skl/arena.go 78 AssertUnderflow(n, l, n-l) × × X
8 6 191 skl/arena.go 93 AssertUnderflow(n, l, n-l) × × X
9 6 191 skl/arena.go 106 AssertUnderflow(n, l, n-l) × × X

10 3 190 pb.pb.go 828 AssertOverflow(offset, 1, offset+1) × × X
11 1 128 value.go 1125 AssertValEq(n, headerBufSize) × × X
12 1 785 iterator.go 186 AssertGte(len(key), len(badgerMove)) × × X
* 4 128 skl/skl.go 124 AssertValEq(valOffset, value) × × X

TABLE II: Report: Information of Detected Weaknesses.

issues in this experiment. CWE-824 (Access of Uninitialized
Pointer) bug is not detected because there is not a suspicious
code snippet matching the pattern.

Fig. 4: Assertion Numbers of Bugs.

Table. II shows the information on detected bugs. Column
“PID” corresponds to the package ID in Table. I. Column
“Line” is the location of assertion in source files. Column “As-
sertion” presents the assertion expressions which are inserted
into programs. For example, the first bug locates in Line.228
of file “badger/cmd/bank.go”, which is an integer underflow
issue, because the calculation “highTs-lowTs” does not detect
the underflow problem. The last three columns show whether
the case can be detected by fuzz testing, unit testing or Go-
Sanitizer. All theses bug cases can hardly be found by pure
testing methods, because they do not raise execution crashes.

As shown in the table, Go-Sanitizer has successfully discov-
ered 12 previous unknown bugs in Badger. Notes that the last
row (marked with an asterisk) is a case of false positive. We
will explain it in Q2. Among these bugs, we have 5 underflow
issues, 3 overflow issues, 2 missing defaults issues, a wrap-
around issue, and a missing length check issue. Five types of
bugs are discovered, while Badger is free of the other four

types. Objectively speaking, Badger’s code is very elegant.
They have a lot of security checks in programs, in order to
avoid some common bugs. In addition to the experiment on
Badger, the effect of detecting bugs can be proven on the test-
suite [16]. This test-suite is written as simple Golang functions,
each of which corresponds to a bug type. Go-Sanitizer is
capable to generate bug-oriented assertion on the test-suite.
From the experiment results above, we can conclude
that Go-Sanitizer is effective in discovering program bugs,
especially those happen without signals of crash.

Q2: How is the accuracy of these assertions: We analyze
the accuracy of bug-oriented assertion from two aspects: 1)
whether to introduce syntax problems after inserting asser-
tions, 2) whether to introduce false positives in testing.

In our experiments, code with assertions can complete
compilation normally. Thus, the code is also syntax-correct
with assertions. On the other hand, there is only one false
positive case. Listing. 3 shows this code snippet. In Line.5,
we generate an assertion to check wrap-around issues for
“value”. Through testing, Go-Sanitizer reports it as a bug case.
However, it is considered as correct code by human validation,
because this code meets programmers’ need to finish decoding
tasks. Compared with detecting program bugs, it is a more
difficult goal to guess programmers’ thoughts. Except for this,
the other 12 cases are real bugs through manual validation.
Thus, Go-Sanitizer has a good accuracy rate in assertion
generation and insertion.

1 // file: skl/skl.go
2 func decodeValue(value uint64) (valOffset uint32,

↪→ valSize uint16) {
3 valOffset = uint32(value)
4 valSize = uint16(value >> 32)
5 goassert.AssertValEq(valOffset, value)
6 return
7 }

Listing 3: Case of False Positive

Q3: How much burden do assertions bring in: Ta-
ble. III shows the time consumption of Badger’s integral unit
testing. Through comparing the source code with assertion-
instrumented code, the latter has only 0.36% more time

consumption on average. Theoretically, assertions need more
calculations in code execution. Thus, the burden is tolerable.

Round Source Code Code with Asserts Burden
1 214.779s 215.644s +0.40%
2 206.378s 207.269s +0.43%
3 217.341s 216.953s -0.18%
4 215.606s 216.553s +0.44%
5 209.387s 210.857s +0.70%

Average 212.70 213.46 +0.36%

TABLE III: Time Consumption of Badger’s unit testing

Case Study: To demonstrate the experiment results more
detail, we pick an example for illustration. Listing. 4 shows
the second bug case of Table. II. This function uses the
binary search principle to find invalid data. However, variable
“highTs” and “lowTs” are external parameters, leading to the
potential possibility of integer overflow in Line.5. Once an
overflow happens, variable “midTs” can be an unqualified
value. Therefore, we insert an assertion in Line.4 to validate
whether this situation could happen. Through testing and
human checks, it is confirmed as a real program bug.

1 // file: badger/cmd/bank.go
2 func findFirstInvalidTxn(db *badger.DB, lowTs,

↪→ highTs uint64) uint64 {
3 // ...
4 goassert.AssertOverflow(lowTs, highTs, lowTs+

↪→ highTs)
5 midTs := (lowTs + highTs) / 2
6 err := checkAt(midTs)
7 if err == badger.ErrKeyNotFound || err == nil

↪→ {
8 return findFirstInvalidTxn(db, midTs+1,

↪→ highTs)
9 }

10 return findFirstInvalidTxn(db, lowTs, midTs)
11 }

Listing 4: An integer overflow bug

C. Lessons Learned

From the design and practical application of Go-Sanitizer,
we have learned two lessons:

There are many bug categories ignored by existing testing
methods. According to our experiment, the 9 bug types can
hardly be captured by traditional testing methods, including
both fuzz testing and unit testing. Some of them are corner
issues, while some are security problems, such as the “regular
expression without anchors”. Although most of these types
would not result in system crashes, it may still lead to
vulnerability or function failure. Thus, it can be really helpful
in practice for test engines to support these bug types.

Bug-Oriented assertions are effective in discovering pro-
gram bugs. Assertions and oracles can help to find a series
of program bugs, especially for those do not raise a crash.
While many researchers have devoted huge efforts to develop
more efficient fuzzing and verification algorithms, the efforts
for assertion or oracle generation are less. More types of bug
should be analyzed and supported. Furthermore, to integrate
testing techniques or verification techniques with bug-oriented

assertion generation is a more powerful way to ensure the
correctness of the program.

V. CONCLUSION

We have proposed Go-Sanitizer, the first bug-oriented asser-
tion generator for Golang, which can discover program bugs
without signals of crash. We have applied it on Badger, and
successfully discovered 12 unreported bug cases in Badger’s
code packages, which can not be detected by pure fuzz or unit
testing methods. All the bugs are confirmed as real problems
with manual validation. The experimental results show that
Go-Sanitizer is effective and accurate in practice.

Our future work mainly includes two aspects. The first is
to support more types of bug. We will define more assertion
patterns and design more accurate location identification al-
gorithms to insert those assertions. The second is to combine
the bug-oriented assertions with the traditional testing methods
more efficiently and seamlessly, for example, guide the Go-
Fuzz to the locations with assertions.

REFERENCES

[1] F. S. Shoumik, M. I. M. M. Talukder, A. I. Jami, N. W. Protik, and
M. M. Hoque, “Scalable micro-service based approach to fhir server with
golang and no-sql,” in 2017 20th International Conference of Computer
and Information Technology (ICCIT). IEEE, 2017, pp. 1–6.

[2] M. Andrawos and M. Helmich, Cloud Native Programming with
Golang: Develop microservice-based high performance web apps for
the cloud with Go. Packt Publishing Ltd, 2017.

[3] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366–1385, 2018.

[4] N. Chalaemwongwan and W. Kurutach, “State of the art and challenges
facing consensus protocols on blockchain,” in 2018 International Con-
ference on Information Networking (ICOIN). IEEE, 2018, pp. 957–962.

[5] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions
of constraints: Whitebox fuzz testing in production,” in International
Conference on Software Engineering, 2013.

[6] V. J. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey.”

[7] D. Vyukov, “go-fuzz,” https://github.com/dvyukov/go-fuzz, 2019.
[8] “Common weakness enumeration,” https://cwe.mitre.org, 2019.
[9] dgraph io, “Badger,” http://github.com/dgraph-io/badger, 2019.

[10] M. Zalewski, “American fuzzy lop,” @http://lcamtuf.coredump.cx/afl/,
[Accessed 2019].

[11] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing. ACM, 2018, pp. 475–485.

[12] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and
J. Sun, “Safl: increasing and accelerating testing coverage with symbolic
execution and guided fuzzing,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. ACM,
2018, pp. 61–64.

[13] C. Wang, F. He, X. Song, Y. Jiang, M. Gu, and J. Sun, “Assertion
recommendation for formal program verification,” in 2017 IEEE 41st
Annual Computer Software and Applications Conference (COMPSAC),
vol. 1. IEEE, 2017, pp. 154–159.

[14] C. Wang, Y. Jiang, X. Zhao, X. Song, M. Gu, and J. Sun, “Weak-assert:
A weakness-oriented assertion recommendation toolkit for program
analysis,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion). IEEE, 2018, pp. 69–72.

[15] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discovery,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 499–510.

[16] wangcong15, “cwe-testsuite-golang,” https://github.com/wangcong15/
cwe-testsuite-golang, 2019.

