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Abstract—State-of-the-art fuzzers implement various optimiza-
tions to enhance their performance. As the optimizations reside
in different stages such as input seed selection and mutation,
it is tempting to combine the optimizations in different stages.
However, our initial attempts demonstrate that naive combination
actually worsens the performance, which explains that most
optimizations are still isolated by stages and metrics.

In this paper, we present InteFuzz, the first framework that
synergically integrates multiple fuzzing optimizations. We analyze
the root cause for performance degradation in naive combination,
and discover optimizations conflict in coverage criteria and opti-
mization granularity. To resolve the conflicts, we propose a novel
priority-based scheduling mechanism. The dynamic integration
considers both branch-based and block-based coverage feedbacks
that are used by most fuzzing optimizations.

In our evaluation, we extract four optimizations from popular
fuzzers such as AFLFast and FairFuzz and compare InteFuzz
against naive combinations. The evaluation results show that
InteFuzz outperforms the naive combination by 29% and 26% in
path- and branch- coverage. Additionally, InteFuzz triggers 222
more unique crashes, and discovers 33 zero-day vulnerabilities
in real-world projects with 12 registered as CVEs.

Index Terms—Fuzzing, Optimizations Integration

I. INTRODUCTION
Because vulnerabilities are a major threat to software secu-

rity [9], [13], [15], [16], [17], discovering them early is vital to
defend against possible attacks. Widely deployed in industry,
fuzzing is one of the most effective vulnerability detection
techniques. For example, OSS-Fuzz [2] developed by Google
continuously tests open source applications and has found over
one thousand bugs in a period of five months [5]. Microsoft
offers a fuzzing cloud service Springfield [1] for developers
to test their software.

The main idea of fuzzing is feeding the program with
invalid, unexpected or random inputs to monitor exceptions.
However, Random mutation of existing inputs to construct
new test cases usually produces low-quality inputs that can
be easily blocked by simple format checks. Thus, coverage
feedback is typically used in fuzzing [28]. There are mainly
two basic types of coverage feedback, namely branch coverage
used in AFL family fuzzers [6], [7], [12], [18], [29], [31] and
block coverage used in libFuzzer [26], honggfuzz [4], etc.

A typical coverage feedback based fuzzing process could
be divided into four stages: preparing, selecting input seeds,
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mutating input seeds and executing target with mutated seeds.
In order to improve the performance, various optimizations
[7], [12], [18], [30] have been proposed for each stage.
For example, in the preparation stage, the target program
is instrumented to track coverage. CollAFL [12] provides a
solution to collect more accurate coverage feedback than AFL
while still preserving low instrumentation overhead. In the
input seed selection stage, AFLFast [7] prefers seeds that
execute less visited paths, thus more effort can be used to test
cold paths. In the input seed mutation stage, FairFuzz [18]
automatically adjusts mutation so that the mutated inputs are
more likely to execute less visited parts of the program. In
the target program execution stage, some operating primitives
[30] are designed to accelerate the running speed.

With so many optimizations, it is intuitive to combine and
accumulate them so fuzzing can be even more practical. Indeed
some optimizations have been applied in many popular fuzzers
and their effect benefit all stages. For example, supplying
high-quality seeds is always good for improving the fuzzing
coverage. SAFL [29] optimizes the widely used fuzzer AFL
by generating high-quality initial seeds and the optimization is
integrated through the external input interface. Another exam-
ple is vulnerability detecting optimizations that are hardened
into the target binary during compilation in the preparing
stage. However, these are straightforward combination because
the optimizations are independent. Among the four stages,
input seed selection and mutation are most essential and thus
attract intensive research and engineering. There are many
optimizations proposed for these two stages. Each individual
optimization has been proven effective for a particular fuzzer.
However, to the best of our knowledge, there has been no
known work to integrate those effective optimizations in these
two most important stages.

In our attempt to build a better fuzzer, we extract various
optimizations and implement them in a single framework.
To our surprise, simple accumulation of optimizations not
only fails to improve the performance but actually leads to
performance degradation. For example, we combine the input
seed selection optimization of AFLFast and the input seed
mutation optimization of FairFuzz and evaluate its perfor-
mance on boringssl (a real program of Google fuzzer-test-
suite) for 24 hours. It turns out the fuzzer with both
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optimizations performs worse than either AFLFast or
FairFuzz. It executes only 82% paths and 85% branches of
AFLFast, and 87% paths and 92% branches of FairFuzz.
Both fuzzers are AFL family tools exploiting branch-based
coverage feedback to guide seed selection and mutation.
Despite so many similarities, the performance degradation
demonstrates that there might exist conflicts between these
two optimizations. There are more diverse optimizations in
other fuzzer families that exploit block-based coverage. The
initial empirical study shows that it is unlikely to obtain good
performance with careless optimization combination. In order
to synergically integrate optimizations to gain benefits and
achieve ideal results, we must examine their mechanism and
address two main challenges:

1) Develop a unified framework. Most optimizations in
the seed selection stage and seed mutation stage rely
on two types of feedback – branch coverage and block
coverage. These optimizations are carefully designed
to work with a particular coverage criteria. A simple
strategy of using a single feedback and thus replacing
coverage criteria for some optimizations will not work.
In order to synergically integrate these optimizations, a
unified framework is needed to support both branch and
block coverage criteria. Also, this framework should be
compatible with optimizations in all four stages.

2) Identify and resolve conflicts. Our empirical study
demonstrates that optimizations adopted in different
fuzzing stages may conflict with each other. Such con-
flicts can eliminate the benefit obtained by individual
optimization. Since static combination is unlikely to
resolve the conflicts, we need to design dynamic algo-
rithms to coordinate different optimizations in execution.

In this paper, we present InteFuzz1, a better engineered
fuzzer that integrates diverse fuzzing optimizations in mul-
tiple stages with each optimization contributing to rather
than degrading the overall performance. InteFuzz unifies
different optimizations based on two basic types of coverage
feedback – branch coverage and block coverage, and records
them simultaneously. It also analyzes the conflicts between
optimizations in different stages. For example, a seed selection
optimization based on block coverage may not be compatible
with a seed mutation optimization guided by branch coverage.
The seeds considered valuable by the seed selection stage
may be deemed not important by the seed mutation opti-
mization and thus ignored or badly mutated. If there exist
conflicts, InteFuzz utilizes a priority-assigning method to
resolve these conflicts. It assigns higher priority to the best
optimization when conflicts occur, and the optimizations with
lower priority are discarded to avoid the negative effect. The
intuition is that if there are no conflicts, InteFuzz benefits
from the joined efforts of multiple optimizations and obtains
maximal performance gain. If there are conflicts, less effective
optimizations are discarded so at least the improvement by the
most effective single optimization is obtained.

We first evaluate InteFuzz on the widely used real-
world program benchmark Google fuzzer-test-suite [3]. We

1https://github.com/intefuzz/intefuzz

extract typical seed selection and seed mutation optimizations
in popular fuzzers and compare the results of optimization
accumulation and InteFuzz-based optimization integration.
The 24-hour experiment shows that the performance declines
in all direct optimization accumulation, which demonstrates
the phenomenon of optimization conflicts is normal rather than
abnormal. In contrast, InteFuzz performs better in resolving
the conflicts in all versions of integrations. Compared to
optimization accumulation, the improvements of path coverage
range from 13% to 29% and the branch coverage ranges from
11% to 26%. In addition, up to 222 more crashes are trig-
gered. Furthermore, we evaluate the efficiency of InteFuzz
on more widely used open source software from GitHub,
InteFuzz helps find 33 more real vulnerabilities, including
12 registered as CVEs.

To summarize, this paper makes the following contributions:
• We sum up the typical types of optimizations and develop

a framework InteFuzz to unify diverse optimizations.
It supports collecting two basic types of coverage feed-
back and integrating individual optimizations.

• We analyze the conflicts of the optimizations working
on different fuzzing stages, and design a priority-based
method to resolve the conflicts when integrating.

• We implement InteFuzz and apply it to fuzz 8 widely
used projects from GitHub. In total, we found 33 new
security vulnerabilities and 12 new CVEs were assigned.

The rest of this paper is organized as follows. Section II
introduces the background of fuzzing and typical optimizations
in each stage. Section III gives a motivation example about
conflicts. Section IV elaborates the design of InteFuzz.
Section VI presents evaluation on the Google benchmark and
some real-world projects. Section VII discusses some lessons
learned in developing InteFuzz, and we get the conclusion
in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Mutation-based fuzzing

Mutation-based fuzzers [23] generate inputs by mutating
existing test cases. This method is automatic and scalable
because it is independent of the input grammar of the target
program. However, aimless mutation always produces lots
of worthless inputs which are easily blocked by the input
checks. To improve its effectiveness, researchers utilize cov-
erage feedback to guide fuzzing. This technique applies an
evolutional strategy which filters the mutated input seeds
by runtime coverage feedback. It preserves the scalability
while improves the effectiveness, and it is widely used in
many domains. For example, Polar [22] utilizes function code
aware mutation-based fuzzing to expose many vulnerabilities
of several popular ICS protocols. EVMFuzzer [11] detects
many EVM vulnerabilities by mutation-based fuzzing. Beyond
that, mutation-based fuzzing is also widely adopted in industry
practice [1], [2], [8], [19], [20], [27].

As Figure 1 shows, mutation-based fuzzing maintains an
input seed pool and mainly contains four stages: (1) Preparing
the binary and initial seeds (2) Selecting input seeds from the
pool (3) Mutating the selected input seeds (4) Executing the
program with the mutated seeds. In the last stage, coverage
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Fig. 1. Mutation-based fuzzing and corresponding optimizations, which
includes four typical stages of preparing, selecting, mutating, and executing.

feedback is collected and only the seeds which have positive
feedback (like covering new branches or paths) are saved to
the seed pool. This coverage feedback based heuristic method
helps the fuzzers explore broader parts of the target program.

There are mainly three levels of coverage feedback, namely
block coverage, branch coverage and path coverage. In prac-
tice, block coverage and branch coverage are widely used.
For example, libFuzzer [26] and honggfuzz [4] are all fuzzers
widely used in industry and they utilize block coverage as
feedback. On the other hand, AFL [31] and its family tools
utilize branch coverage as feedback. These two types of
coverage each have its own advantages. The branch coverage is
accurate, which can find problems that exist in the transition
of blocks. The block coverage is coarse, but it is easiest to
track and implement among the three. The path coverage is
rarely used. Because the count of paths may be extremely high,
making it difficult to count and store the path coverage.

B. Fuzzing Optimizations
Optimizations in preparing and executing stage. Most

optimizations in the preparing stage and the executing stage
are independent of each other, and are loosely coupled with
the runtime coverage feedback. They have been integrated into
popular fuzzers to accumulate the improvements successfully.

To track the coverage feedback, many fuzzers perform
static instrumentation [21] in the preparing binary stage. The
optimization of CollAFL [12] provides a solution to collect
coverage feedback without bit-map collision. To better capture
errors, some vulnerability detectors are inserted into the target
binary by instrumentation. For example, AddressSanitizer [25]
is a widely used memory error detector which finds memory
access bugs fast and effectively. In the preparing stage, initial
input seeds are required. In intuition, high-quality initial seeds
which execute deep places of the target program aids the
fuzzing greatly [29]. Some optimizations generate these input
seeds through program analysis. For example, SAFL [29]
utilizes symbolic execution to supply high-quality initial seeds.
To speed up the executing stage, some specific operating
primitives that can improve the performance for fuzzers in
a multi-core machine are designed and implemented [30].

Optimizations in selecting seeds stage. Selecting seeds
is important to fuzzing and closely coupled with the run-
time coverage feedback. Seed selection determines whether
to mutate a seed and how many times to mutate the selected
seed. A good seed selection algorithm selects suitable seeds
and assigns an appropriate mutation times, which promotes
expanding coverage to trigger crashes while avoids wasting

resources. The simplest strategy is selecting seeds sequentially
like honggfuzz [4]. On this basis, many optimizations of this
stage target to expand coverage.

Some optimizations are based on block coverage feedback.
For example, libFuzzer selects seeds according to piecewise
constant distribution whose weight is decided by the new
blocks covered by the seed. Some optimizations are based
on branch coverage feedback. For example, AFL picks up
the input seed which is the smallest and fastest for each
covered branch. It prefers these seeds and its mutation times
is calculated by some indications such as coverage and birth
time. AFLFast [7] counts the path frequency based on branch
coverage. It prefers to select seeds which execute less-frequent
paths. Its fast strategy also gives more mutation times for these
seeds, thus more energy could be used to test cold paths.

Optimizations in mutating seeds stage. Mutating seeds is
the essential stage in mutation-based fuzzing, which is closely
coupled with the runtime coverage feedback and interacted
with the seed selection stage. In this stage, the selected
seeds are mutated to generate new test inputs by a series of
mutating operations like bit flipping and byte flipping. Efficient
mutations would generate more valuable seeds that can pass
the complicated checks and reach deep places of the code.
These seeds always have some delicate structures which meet
the requirements of checks. The inefficient mutation would
easily damage the structure to produce low-quality seeds.
The basic seed mutation knows little about the program. For
example, zzuf [14] mutates the inputs by flipping random bits
controlled by a predefined mutation ratio.

Some optimizations are based on block coverage feedback.
For example, FuzzerGym [10] chooses the mutation operations
according to the weight learned by block coverage. Some
optimizations are based on branch coverage feedback. For
example, FairFuzz [18] collects branch hit count to recognize
rare branches. It mutates input seeds in a restricted way so
that the mutated inputs are more likely to still explore the
rarest branch. Accompanied with the feedback, researchers
also utilize program analysis to collect more information to
decide how to mutate. For example, VUzzer [24] leverages
control- and data-flow features based on static and dynamic
analysis to infer bytes and their values to mutate.

C. Main difference
There are a large number of optimizations in different stages

of fuzzing. However, most of them focus on only improving
single stage performance. Few studies systematically explore
the feasibility of integrating those optimizations and how to
integrate them for better performance. Generally speaking, op-
timizations in preparing and executing stages are independent
of each other, and can be easily integrated. Meanwhile, for
the stages of selecting seeds and mutating seeds, because of
the close interaction and the dependence of run-time feedback,
integrating optimizations in these two stages are very difficult.
Moreover, a direct integration of optimizations of these two
stages would result in conflicts and performance degradation.
Thus, special care is required to integrate different optimiza-
tions across stages. In summary, InteFuzz does not create
novel individual optimizations, but it focuses on improving
the overall fuzzing performance via integrating existing
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optimizations, especially those in the seed selection stage
and mutation stage. It first unifies optimizations of these
two stages based on two types of coverage feedback and
uses an priority-assigning method to deal with the conflicts
among existing optimizations.

III. MOTIVATING EXAMPLE

Here, we directly integrate the seed selection optimization of
AFLFast and the seed mutation optimization of FairFuzz. Then
we evaluate the 24-hour performance of the direct integration
on fuzzing boringssl, a Google developed communication
protocol toolkit contained in Google fuzzer-test-suite.

AFLFast and FairFuzz. The seed selection of AFLFast
and seed mutation of FairFuzz use two classic optimizations,
namely fast power schedule selection and target branch re-
served mutation. These two optimizations aim at covering the
program rare parts quicker and better. The fast power schedule
in AFLFast is based on path frequency defined on branch
coverage feedback. It calculates mutation times for the seed
according to path frequency, and prioritizes seeds exercising
low-frequency paths. This optimization helps AFLFast reach
the program rare branches while avoids wasting resources on
hot paths. FairFuzz is based on branch hit count. When an
input seed is selected, the branch which has the smallest hit
count is defined as the target branch. FairFuzz mutates input
seeds in a restricted way to ensure that the generated seeds still
hit the target branch, and the mutated seeds whose hit count
of the target branch is not smaller than the threshold will be
skipped. This mutation method increases the probability to
access program rare branches.

Implementation of direct integration. The direct integra-
tion is premised on the fact that the two optimizations have
the same targets and work on two individual stages, and both
AFLfast and FairFuzz are implemented upon AFL. We just
need to copy and combine the code revisions of AFLFast and
FairFuzz into the original AFL. The combined version not only
collects path frequency information based on branch coverage,
but also counts the hit of each branch. The seed is selected
by rules of AFLFast thus the seed exercising low-frequency
paths are prioritized, and the selected seed is mutated by the
algorithm of FairFuzz.

Results and analysis. Figure 2 and Figure 3 show the
number of paths and branches covered in 24 hours when
fuzzing boringssl by AFLFast, FairFuzz and their direct inte-
gration. The results show that the direct integration performs
worse than both AFLFast and FairFuzz alone. In detail, the
direct integration only executes 82%, 87% paths and covers
85%, 92% branches of AFLFast and FairFuzz. The results
also illustrate that the direct integration explores the program
slower than AFLFast and FairFuzz.

Let us look into the example. We expect that the inte-
gration of seed selection optimization in AFLFast and seed
mutation optimization in FairFuzz would improve the fuzzing
performance. But the conflicts emerge and the performance
degrades. The seeds selected by AFLFast might not perfectly
meet the requirements of FairFuzz. In specific, FairFuzz only
mutates seeds whose target branch hit count is less than the
threshold, but the selected seeds from AFLFast may not cover
such branches. These selected seeds are valuable to mutate
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Fig. 2. Number of paths over time for fuzzing boringssl.
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Fig. 3. Number of branches over time for fuzzing boringssl.

but are skipped in the direct integration. As a result, the speed
slows down and much resources are wasted.

To solve the conflicts and take advantages of AFLFast
and FairFuzz, a designated priority could help. When a seed
executes the low-frequency path and covers the branch whose
hit count is small enough at the same time, overall performance
benefits from both. Otherwise, the priority decides whether the
seed should be selected first or checked by the requirements
of FairFuzz first. When seed selection has higher priority
than seed mutation, the seeds are first selected based on
path-frequency. Even those seeds do not meet the optimized
mutation criteria of FairFuzz, they are still valuable and can be
mutated by normal mutation methods of original AFL. When
seed mutation has higher priority, the seeds are first checked
by the criteria of FairFuzz, and the seeds that pass the check
would be mutated by the optimized mutation of FairFuzz. We
can set the priority to solve the conflict, in this way, at least
one optimization would take effect continuously.

IV. INTEGRATION FRAMEWORK DESIGN

The proposed framework InteFuzz aims to integrate
the optimizations in different stages, especially the closely
coupled seed selection stage and seed mutation stage to obtain
bigger gains. Figure 4 presents the design of InteFuzz. It
first unifies diverse optimizations in the selection stage and
mutation stage based on the basic branch and block cover-
age feedback. These two coverage feedback are maintained
simultaneously. It then utilizes a priority-assigning method
to resolve conflicts among optimizations in two stages. With
support of the twofold coverage feedback and automatic
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conflicts resolving, InteFuzz integrates optimizations well
and reports vulnerabilities efficiently.

A. Unify diverse optimizations
To integrate diverse optimizations, unifying them is the

basic requirement. In Section II, we have introduced many
kinds of optimizations. Among them, the optimizations in
the loosely-coupled preparing stage and executing stage have
been integrated into popular fuzzers well in practice. The
difficult part is unifying and integrating the optimizations in
the closely coupled seed selection stage and seed mutation
stage. InteFuzz unifies their optimizations by simultane-
ously collecting twofold coverage feedback – branch coverage
and block coverage, which are the basics of most optimizations
in the two stages. Those minor types of optimizations with
special interest such as resource consumption and time cost
feedback are not considered and supported yet. As shown in
the listing 1, a double record area is used to store the coverage.
In specific, the first half stores the branch coverage information
while the second half stores the block coverage information.

struct coverage_record{
u8 branch_bit_map[MAP_SIZE];
u8 block_bit_map[MAP_SIZE];

}

Listing 1. The data structure of coverage feedback record.

We use the unification and integration of selection opti-
mization in libFuzzer and mutation optimization in FairFuzz
as an example to demonstrate how it works. libFuzzer is
a block-based fuzzer that selects seeds according to the
weight calculated by the new block hit count of the seed.
FairFuzz is a branch-based AFL family fuzzer, and it relies
on restricted mutation to reserve the accessibility of program
rare branches. Based on the data structure, we can unify
these two optimizations as follows. libFuzzer collects block hit
count from the second part of the record area to select seeds,
while at the same time, FairFuzz decides the target branch for
mutation based on the branch coverage from the first part of
the record area. Whenever a generated seed has new coverage,
InteFuzz updates the branch and block coverage together.
In this way, the selection in libFuzzer and mutation in FairFuzz
execute their own optimization logic separately and the overall
performance obtains benefits from both optimizations.

The double record area structure has the following advan-
tages: (1) It supplies the coverage feedback needed by most
optimizations, which unifies diverse optimizations well. (2)
It does not change any logic in optimizations, which keeps
the original effectiveness of them. (3) It is convenient to
implement by adding the additional logic in instrumentation
of preparing stage and feedback collection of running stage.

B. Priority-assigning based conflicts resolving
When optimizations of different stages work together, they

might assist each other and promote the whole fuzzing perfor-
mance as described above. But sometimes these optimizations
might not be harmonious and have conflicts. There are mainly
two kinds of conflicts among them.

The first is the conflicts among the different criteria defini-
tions of different optimizations. For example, libFuzzer and
FairFuzz both target to expand coverage. libFuzzer selects
seeds by the weight decided by the hit count of the new
covered blocks. But its selection might not meet the criteria
definition of FairFuzz. The mutation optimization of FairFuzz
requires that the seed must hit rare branches, which means
the hit count of the branch indicated block is lower than the
threshold. Otherwise, it will skip them. So in some cases,
libFuzzer provides suitable seeds for advanced mutation. But
sometimes the seed would be skipped because of failing to
meet the criteria definition of FairFuzz. In this situation, the
seeds selected cannot be mutated optimally, and the mutation
algorithm individually keeps waiting for its own suitable seeds.

The other is the conflicts among the different granular-
ity of runtime information used by different optimizations.
Integrating optimizations of different granularity may cause
conflicts. For example, AFLFast targets to cover rare parts
of the program quickly. It selects seeds according to path
frequency, which is a high-level information. FairFuzz mu-
tates seeds according to branch hit count, which is a lower
level information. Because some low-frequency paths may
be composed of all frequent branches, the high-level based
selection of AFLFast may select some input seeds exercising
low-frequency paths but cover no rare branches at all. In this
situation, the advanced mutation algorithm will also skip these
input seeds and wait for suitable seeds. These two types of
conflicts offset the profits obtained by the integration.

ALGORITHM 1: Selection Prioritized Conflicts Resolving
Input : Initial seeds S, multi coverage map M

1 Queue← S;
2 repeat
3 foreach seed s of the Pool do
4 if satisfyOptimizedSelection(s, M) then
5 if satisfyOptimizedMutation(s, M)

then
6 s′ = OptimizedMutate(s);
7 else
8 s′ = NormalMutate(s);
9 end

10 else
11 continue;
12 end
13 runProgram(s′);
14 if causeCrash(s’) then
15 add s′ to S c;
16 else if haveNewCoverage(s’) then
17 add s′ to Pool;
18 updateCoverage(M);
19 end
20 end
21 until timeout or abort-signal;

Output: Crashing seeds S c

To resolve conflicts and obtain bigger benefits, InteFuzz
utilizes a priority-assigning method as following. Algorithm
1 and Algorithm 2 present two different priority-assigning
solutions. The first one gives the priority to the optimized input
seed selection. The optimized selection first decides whether
a seed is worth to mutate. Then the selected seed is checked
whether meets the requirements of the optimized mutation.
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If meets, it will be mutated in an optimized way. Otherwise,
it would not be wasted because the normal mutation is still
prepared for mutating it.

On the other hand, Algorithm 2 prioritizes the optimized
mutation. Every seed will be first checked whether meets
requirements by the optimized mutation. The seeds satisfying
requirements will be mutated by the optimized mutation.
Then the seeds left behind will be selected by the optimized
selection, and the survivors will accept normal mutation.

ALGORITHM 2: Mutation Prioritized Conflicts Resolving
Input : Initial seeds S, multi coverage map M

1 Queue← S;
2 repeat
3 foreach seed s of the Pool do
4 if satisfyOptimizedMutation(s, M) then
5 s′ = OptimizedMutate(s);
6 else if satisfyOptimizedSelection(s, M)

then
7 s′ = NormalMutate(s)
8 end
9 else

10 continue;
11 end
12 runProgram(s′);
13 if causeCrash(s’) then
14 add s′ to S c;
15 else if haveNewCoverage(s’) then
16 add s′ to Pool;
17 updateCoverage(M);
18 end
19 end
20 until timeout or abort-signal;

Output: Crashing seeds S c

The priority-based solution ensures that the generated seeds
which are preferred by any optimization of the two stages
will be utilized even if conflicts occur. The input seeds
preferred by both optimizations will be fuzzed in the best way.
After assigning priority, the conflicts get resolved while the
advantages of each optimized approaches are maintained.

V. IMPLEMENTATION
We extract typical optimizations of seed selection and

seed mutation in popular fuzzers and implement InteFuzz-

based optimization integrations on AFL. Original AFL uses
a 64KB shared memory to record the branch coverage. Here,
InteFuzz expands it to 128KB to record both branch and
block coverage. At the compile time, InteFuzz carries a
lightweight instrument on the source code. The code injected
at every branch points is simplified as Listing 2.

cur_loc=<COMPILE_TIME_RANDOM(MAP_SIZE)>;
shared_mem[cur_loc ˆ prev_loc]++;
shared_mem[cur_loc + MAP_SIZE]++;
prev_loc = cur_loc >> 1;

Listing 2. Instrumentation code.

The value named cur loc is generated randomly at compile
time to identify the current basic block. Its maximum value
MAP SIZE is 64KB. A bitwise XOR is performed on cur loc
and prev loc to identify the branch. The shared mem[] array
is a 128 KB shared memory region. The first half part of
it records the branch coverage while the second half part
maintains the block coverage. The shift operation in the last
line in Listing 2 makes a distinction between the transition
from block A to B and the transition from block B to A. In
execution time, the process of the fuzzed program connects to
the shared memory in the host process to record the coverage.
With the recording of two types of feedback, InteFuzz
supplies the basis to unify diverse optimizations.

Because most optimizations of selection stage and muta-
tion stage locate in two types – branch-based optimization
and block-based optimization, we get four versions of di-
rect integrations – branch-based selection with branch-based
mutation, branch-based selection with block-based mutation,
block-based selection with branch-based mutation, and block-
based selection with block-based mutation. Each of the four
direct optimization integration versions corresponds to two
InteFuzz-based conflict-aware versions.

To implement the twelve integration versions (four direct in-
tegration and eight corresponding conflict-aware integration),
we first define two maps. One counts the hit number of every
branch and block, and the other counts the execution time of
each path. InteFuzz implements two input seed selection
components based on branch coverage and block coverage

6



3500

3700

3900

4100

4300

4500

4700

4900

5100

5300

AFLFast FairFuzz Direct
integration

Selecting
Prioritized
Integration

Mutation
Prioritized
Integration

(a) Number of total paths

33000

35000

37000

39000

41000

43000

45000

AFLFast FairFuzz Direct
Integration

Selecting
Prioritized
Integration

Mutation
Prioritized
Integration

(b) Number of total branches

0

5

10

15

20

25

30

35

40

45

AFLFast FairFuzz Direct
Integration

Selecting
Prioritized
Integration

Mutation
Prioritized
Integration

(c) Number of total crashes
Fig. 5. Performance of AFLFast, FairFuzz, Direct integration of AFLFast and FairFuzz, Selecting Prioritized Integration of AFLFast and FairFuzz and
Mutation Prioritized Integration of AFLFast and FairFuzz. The conflict-aware integration outperforms the individual fuzzer and their direct integrations much.

respectively. In branch-based selection, like AFL, for each
branch, it will find a smaller and faster input seed which
covers it as a favored seed. For the block-based selection
version, like libFuzzer, it selects a favored seed for each
block. To support higher level optimizations such as path-
based AFLFast, InteFuzz also considers the path frequency
into the determination of the favored seed. In the same way,
InteFuzz implements two input seed mutation components
based on branch coverage and block coverage respectively. In
the branch-based version, like FairFuzz, it determines its target
branch based on branch hit count. In block-based version, it
decides its target block based on block hit count. Then the
target branch or block reserved mutation can be executed.

The priority-based conflicts resolving is implemented by
adjusting the priority order of the seed selection and the seed
mutation. As demonstrated in Algorithm 1 and 2, when the
seed selection is in the front, it gets the higher priority and
filters the seeds first. Otherwise, the seed mutation first checks
whether the seed satisfies its requirements and directly mutates
those qualified seeds.

VI. EVALUATION
We first evaluate InteFuzz on widely used real-world

programs from Google fuzzer-test-suite. Results show that
each InteFuzz-based conflict-aware integration outperforms
their corresponding direct integration. The total improvements
of path coverage range from 13% to 29%, the branch coverage
range from 11% to 26%, and at most 222 more unique crashes
are triggered on the benchmark. We also evaluate InteFuzz
on more widely used open source software from GitHub, and
InteFuzz detects 33 more real bugs, including 12 registered
as CVEs.

A. Benchmark Evaluation
Experiment setup: From the widely used fuzzing benchmark
Google fuzzer-test-suite, we first use the 8 real world programs
that have also been used in previous literature studies for a
better and fairer comparison, containing c-ares, guetzli, lcms,
libssh, openssl, proj4, re2 and woff2. They are all derived
from real-world libraries and contain typical bugs as well as
hard-to-reach code parts. We follow the three existing metrics

to evaluate the results. These metrics contain the number
of executed paths, covered branches and triggered unique
crashes. The first two metrics evaluate the coverage of the
target programs, and the last metric reveals the probability
of detecting vulnerabilities. The crashes are distinguished by
execution paths. Thus several unique crashes might point to
the same bug. The more unique crashes we detected, the higher
probability and more vulnerabilities could be identified.

To quantify whether InteFuzz-based conflict-aware inte-
gration improves the corresponding direct integration or not,
we carry out 4 groups of integration experiments (branch-
based selection with branch-based mutation–BrBr, branch-
based selection with block-based mutation–BrBl, block-based
selection with branch-based mutation–BlBr, and block-based
selection with block-based mutation–BlBl). In each group (e.g.
BrBr), the direct integration version (e.g. Direct-BrBr) is
compared to the two conflict-aware integrations with selec-
tion prioritized version (e.g. InteFuzz-BrBrS) and mutation
prioritized version (e.g. InteFuzz-BrBrM).

We conduct 24-hour experiments of each tool in single core
mode on a 64-bit machine with 32 cores (Intel(R) Xeon(R)
CPU E5- 2630 v3 @ 2.40GHz), 128GB of main memory,
and Ubuntu 16.04 as host OS. Each fuzzer is supplied with
the same set of initial input seeds and instrumented with
AddressSanitizer. Table I, Table II, Table III and Figure 5
present the number of paths executed, branches covered and
crashes triggered by AFLFast, FairFuzz, direct integrations
and corresponding InteFuzz-based conflict-aware integra-
tion versions.

1) BrBr Group – branch-based selection and branch-based
mutation: This group represents the type which integrates
optimizations in branch-based selection and branch-based mu-
tation. For example, integrate the selection optimizations of
AFLFast and mutation optimizations of FairFuzz.

Figure 5 compares the overall performance of AFLFast,
FairFuzz, their direct integration version Direct-BrBr and
InteFuzz-based conflict-aware integration with selection
prioritized version InteFuzz-BrBrS and mutation prioritized
version InteFuzz-BrBrM. Figure 5 (a), Figure 5 (b) and
Figure 5 (c) show that the coverage performance of direct
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TABLE I
NUMBER OF PATHS

Project AFLFast FairFuzz Direct-
BrBr

InteFuzz-
BrBrS

InteFuzz-
BrBrM

Direct-
BrBl

InteFuzz-
BrBlS

InteFuzz-
BrBlM

Direct-
BlBr

InteFuzz-
BlBrS

InteFuzz-
BlBrM

Direct-
BlBl

InteFuzz-
BlBlS

InteFuzz-
BlBlM

c-ares 26 26 22 37 38 21 37 36 23 35 38 24 41 37
guetzlili 4 4 4 699 307 4 349 308 4 391 326 275 328 334
Lcms- 108 272 103 326 342 77 346 368 260 370 323 106 394 365
libssh 20 222 20 22 20 19 20 22 20 22 21 19 22 22
openssl 881 1068 926 1113 1070 1116 1095 1083 1045 1046 1102 919 1060 1078
proj4 45 49 52 76 80 44 81 74 43 79 71 51 70 72
re2 2645 2760 2903 2932 2957 2646 2903 2898 2618 2877 2914 2784 2800 2959
woff2 2 2 2 3 3 2 3 3 2 3 3 2 3 3
Total 3731 4403 4032 5208 4817 3929 4834 4792 4015 4823 4798 4180 4718 4870
Improvement - - -8% ↓ 29% ↑ 19% ↑ -11% ↓ 23% ↑ 22% ↑ -9% ↓ 20% ↑ 20% ↑ -5% ↓ 13% ↑ 17% ↑

TABLE II
NUMBER OF BRANCHES

Project AFLFast FairFuzz Direct-
BrBr1

InteFuzz-
BrBrS

InteFuzz-
BrBrM

Direct-
BrBl2

InteFuzz-
BrBlS

InteFuzz-
BrBlM

Direct-
BlBr3

InteFuzz-
BlBrS

InteFuzz-
BlBrM

Direct-
BlBl4

InteFuzz-
BlBlS

InteFuzz-
BlBlM

c-ares 149 149 145 198 198 141 198 198 144 198 198 156 198 198
guetzlili 53 53 53 4429 2355 53 2373 2265 53 2833 2341 2393 2337 2364
Lcms- 1260 4578 1243 5175 5039 1149 5071 5267 4137 5245 5077 1250 6079 5240
libssh 1065 1065 1065 1067 1067 1065 1067 1067 1063 1067 1067 1065 1067 1067
openssl 8827 9206 8997 9285 9298 9257 9273 9298 9139 9230 9290 8863 9222 9251
proj4 303 254 258 377 379 223 378 379 263 379 377 306 377 377
re2 22722 22927 23249 23444 23272 22596 23241 23205 22601 23171 23308 22948 22834 23519
woff2 30 30 30 32 32 30 32 32 30 32 32 30 32 32
Total 34409 38262 35040 44007 41640 34514 41633 41711 37430 42155 41690 37011 42146 42048
Improvement - - -8% ↓ 26% ↑ 19% ↑ -10% ↓ 21% ↑ 21% ↑ -2% ↓ 13% ↑ 11% ↑ -3% ↓ 14% ↑ 14% ↑

TABLE III
NUMBER OF CRASHES

Project AFLFast FairFuzz Direct-
BrBr

InteFuzz-
BrBrS

InteFuzz-
BrBrM

Direct-
BrBl

InteFuzz-
BrBlS

InteFuzz-
BrBlM

Direct-
BlBr

InteFuzz-
BlBrS

InteFuzz-
BlBrM

Direct-
BlBl

InteFuzz-
BlBlS

InteFuzz-
BlBlM

c-ares 0 0 0 8 9 0 9 8 0 4 7 0 5 10
guetzlili 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lcms- 0 0 0 0 0 0 0 0 0 0 0 0 0 0
libssh 0 0 0 0 0 0 0 0 0 0 0 0 0 0
openssl 1 1 2 34 16 40 51 22 5 11 11 2 8 9
proj4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
re2 0 0 0 0 0 0 163 0 0 0 0 0 0 0
woff2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 1 1 2 42 25 40 223 30 5 15 18 2 13 19
Improvement - - 1 ↑ 41 ↑ 24 ↑ 39 ↑ 222 ↑ 29 ↑ 4 ↑ 14 ↑ 17 ↑ 1 ↑ 12 ↑ 18 ↑

integration does not get obvious improvement compared to
AFLFast and FairFuzz, but the performance degradation of
the direct integration especially compared to FairFuzz alone
is amazing. The conflicts between AFLFast and FairFuzz are
both caused by the different criteria definitions and granularity
of runtime information. AFLFast optimizes fuzzing by only
selecting input seeds which execute low-frequency path while
FairFuzz only mutates seeds which cover rare branches. The
path frequency is based on branch feedback, however, low-
frequency paths may be composed of all frequent branches.
Thus conflicts emerge and FairFuzz has to keep waiting
for suitable seeds. The two InteFuzz-based conflict-aware
integrations perform much better than AFLFast, FairFuzz and
their direct integration in executed paths and covered branches,
and are more powerful to trigger unique crashes.

We use the statistical data of each project from the first four
columns of Table I, Table II, and Table III for more detailed
comparisons. The direct integration Direct-BrBr executes 8%
more paths and covers 2% more branches than AFLFast. It
only execute 92% paths and covers 92% branches of FairFuzz.
But luckily it triggers 2 unique crashes, and AFLFast and
FairFuzz only trigger 1 unique crash. From the fifth column
of these three tables, we find that selection prioritized version
InteFuzz-BrBrS executes 40%, 18%, and 29% more paths

and covers 28%, 15%, and 26% more branches than AFLFast,
FairFuzz and their direct integration, respectively. From the
sixth column, we observe that mutation prioritized version
InteFuzz-BrBrM executes 29%, 9%, and 19% more paths
and covers 21%, 9%, and 19% more branches than AFLFast,
FairFuzz and their direct integration, respectively. Further-
more, InteFuzz-BrBrS triggers 42 crashes and InteFuzz-
BrBrM triggers 25 crashes. The results demonstrate that the
InteFuzz-based conflict-aware integration of branch-based
selection optimization and branch-based mutation optimization
improves the fuzzing performance.

2) BrBl Group – branch-based selection and block-
based mutation: This group represents the mixed type
which integrates optimizations in branch-based selection and
block-based mutation.

From the seventh to ninth columns of the tables, we
find that the performance of the direct integration Direct-
BrBl degrades, and the selection prioritized version InteFuzz-
BrBlS and the mutation prioritized version InteFuzz-BrBlM
outperform others. In detail, the selection prioritized version
and the mutation prioritized version execute 23% and 22%
more paths and cover 21% and 21% more branches than the
direct integration, respectively. The performance degradation
shows the existence of conflicts. In this situation, the conflicts
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are caused by different criteria definitions and different gran-
ularity of runtime information. The selection optimized fuzzer
selects seeds according to path frequency based on branch
coverage while the other fuzzer chooses mutation operation
based on block coverage. Thus the selected seeds may not
meet the criteria definitions of the other. Besides, different
granularities cause the integrated fuzzer cannot always find
the most suitable mutation operations. For the number of
crashes triggered, the selection prioritized version triggers 223
crashes in two projects – openssl and c-areas, while the direct
integration triggers 40 crashes only in only one project openssl.
The mutation prioritized version triggers 30 crashes. This
number is smaller than the direct integration, but it also detects
crashes in two projects openssl and c-ares. The results demon-
strate that the InteFuzz-based conflict-aware integration of
branch-based selection optimization and block-based mutation
optimization improves the fuzzing performance.

3) BlBr Group – block-based selection and branch-based
mutation: This group represents the mixed type which in-
tegrates optimizations in block-based selection and branch-
based mutation. For example, integrate selection optimizations
of libFuzzer and mutation optimizations of FairFuzz.

From the tenth to twelfth columns of the tables, we ob-
serve that the performance of the direct integration Direct-
BlBr degrades, and the selection prioritized version InteFuzz-
BlBrS and the mutation prioritized version InteFuzz-BlBrM
outperform others. In detail, the selection prioritized version
and the mutation prioritized version execute 20% and 20%
more paths and cover 13% and 11% more branches than
the direct integration. The worse performance of the direct
integration presents the conflicts between these optimizations.
In this situation, the conflicts are mainly caused by different
criteria definitions. The selection optimized fuzzer selects
seeds based on new blocks hit while the other only mutates
seeds which cover rare branches. The selected seeds may
not meet the criteria definitions of the mutation optimized
fuzzer. As a result, the mutation has to keep waiting for its
suitable seeds. Moreover, the selection prioritized version and
the mutation prioritized version trigger 15 and 18 crashes in
openssl and c-areas. In contrast, the direct integration only
triggers 5 crashes in openssl. The results demonstrate that the
InteFuzz-based conflict-aware integration of block-based
selection optimization and branch-based mutation optimization
improves the fuzzing performance.

4) BlBl Group – block-based selection and block-based
mutation: This group represents the type which integrates op-
timizations of block-based selection and block-based mutation.

From the last three columns of the tables, we find that the
performance of the direct integration Direct-BlBl degrades,
and the selection prioritized version InteFuzz-BlBlS as well as
the mutation prioritized version InteFuzz-BlBlM outperform
others. In detail, the selection prioritized version and mutation
prioritized version execute 13% and 17% more paths and
cover 14% and 14% more branches than the direct integration.
The worse performance of the direct integration shows the
existence of conflicts. In this situation, the conflicts are mainly
caused by different criteria definitions. The selection optimized
fuzzer selects seeds based on new blocks hit but the selected
seeds may not meet the criteria definitions of the other fuzzer

on total block hit count. Furthermore, for the number of
crashes triggered, the selection prioritized version and muta-
tion prioritized version trigger 13 and 19 crashes respectively,
while the direct integration only triggers 2 crashes. The results
illustrate that InteFuzz-based conflict-aware integration of
block-based selection optimization and block-based mutation
optimization improves the performance.
Conflict-aware Integration Conclusion. From the above
statistics, we conclude that (1) For the block-based and branch-
based optimizations in the seed selection stage and seed
mutation stage, their direct integrations would degrade in path
and branch coverage. Sometimes it may trigger more unique
crashes, but cannot detect more new bugs than individual
optimization alone; (2) For any combination of the block-based
and branch-based optimizations in the seed selection stage and
the seed mutation stage, the InteFuzz-based conflict-aware
integrations obtain considerable improvements in path and
branch coverage. Sometimes it may not trigger more unique
crashes, but can always detect more new bugs than individual
optimization alone and their direct optimizations integration.

B. GitHub Vulnerabilities Mining

We employ InteFuzz-based integration of AFLFast and
FairFuzz to fuzz more real-world programs from GitHub, and
they also perform well. Although some of these programs,
such as libwav and libpng, have been well fuzzed, we still
discover 33 unknown vulnerabilities. Among them, 12 are
successfully registered as CVEs, as shown in Table IV.

TABLE IV
THE VULNERABILITIES DETECTED BY INTEFUZZ-BRBRM

Project Unknown
Vulnera-
bilities

CVE-Number or Vulnerability type

Bento4 5 CVE-2018-14531, CVE-2018-14532
libwav 1 CVE-2018-14549
pdf2json 2 CVE-2018-14946, CVE-2018-14947
sound 1 CVE-2018-14948
imageworsener 1 CVE-2018-16782
dbf2txt 1 CVE-2018-17042
doc2txt 2 CVE-2018-17043
simdcomp 1 CVE-2018-17427
pbc 4 CVE-2018-12915, CVE-2018-12917
libpng 1 buffer overflow
thunlp/NRE 2 segment fault
thunlp/Fast-TransX 3 segment fault
tinyrenderer 5 segment fault
pdfalto 4 segment fault, floating Point Exception,

infinite loop

Let us take libpng as an example. libpng is an official
PNG reference library for reading and writing PNG image
files, which has been used and extensively tested for many
years. However, InteFuzz-based integration still detects one
new vulnerability, while AFLFast and FairFuzz do not detect
any vulnerability for fuzzing several times. The vulnerability
allows remote attackers to cause the buffer overflow via a
crafted input. As Listing 3 shows, the vulnerability locates in
the function get token in pnm2png.c. The index i in function
get token might be out of range and buffer overflow happens.

We collect the number of paths and branches for fuzzing
libpng in 24 hours with AFLFast, FairFuzz, their direct inte-
gration, InteFuzz-BrBrS and InteFuzz-BrBrM in Figure 6
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void get_token(FILE *pnm_file, char *token)
{
...
// read string
do
{

ret = fgetc(pnm_file);
if (ret == EOF) break;
i++;
token[i] = (unsigned char) ret; //<==

buffer overflow occurs here
}
while ((token[i] != ’\n’) && (token[i] !=
’\r’) && (token[i] != ’ ’));
...

}

BOOL pnm2png (...) {
...
char type_token[16];
get_token(pnm_file, type_token);
...

}

Listing 3. A vulnerability in libpng which causes buffer overflow.

and Figure 7. It demonstrates that both selection and mutation
prioritized version of InteFuzz perform better than others.
Although the mutation prioritized version is a little slow in
the very beginning due to the more complex initialization, it
quickly catches up and surpasses others. At last, two versions
of InteFuzz execute more paths and cover more branches
than AFLFast and FairFuzz. In contrast, the direct integration
performs a little worse than both AFLFast and FairFuzz.
Not just on libpng, InteFuzz also performs well on other
real-world programs. These practices and comparisons show
that InteFuzz successfully benefits from individual opti-
mizations and improves the fuzzing performance through the
conflict-aware integration.
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Fig. 6. Number of paths over time of AFLFast, FairFuzz, their direct
integration, InteFuzz-BrBrS and InteFuzz-BrBrM for fuzzing libpng.

VII. LESSONS LEARNED

During the development and practice of InteFuzz in real
projects, we get the valuable lessons as follows:

(1) Even those optimizations have aligned objective and
work on different stages, they might have conflicts and
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Fig. 7. Number of branches over time of AFLFast, FairFuzz, their direct
integration, InteFuzz-BrBrS and InteFuzz-BrBrM for fuzzing libpng.

directly integrating those optimizations may offset the
gains. Discovering more vulnerabilities and exercising more
branches are the aligned objective of most optimizations.
On this basis, integrating optimizations of different stages to
benefit most from them becomes meaningful. The input seed
selection and mutation stage associates with each other closely,
and the individual optimizations of them might have different
criteria definitions and granularity of runtime information.
Thus conflicts are more likely to appear and direct integrations
may offset the gains brought by each individual optimization.

(2) Conflict-aware integration of existing optimizations
would greatly improve the performance of fuzzing. Uti-
lizing feedback information to optimize fuzzing is widely
used. However, different feedback information is used in
optimizations. To integrate them, a framework which collects
multiple feedback information is needed. Assigning priority is
a common way to resolve conflicts between processes in the
operating system. It also goes for resolving conflicts between
optimizations of fuzzing. When there are no conflicts, the
overall performance benefits most from each optimization.
When conflicts emerge, the overall process could benefit from
the optimization with higher priority.

VIII. CONCLUSION

Many optimizations of fuzzing exist but few studies explore
the feasibility of integrating multiple optimizations to obtain
bigger gains. In this paper, we propose InteFuzz, the first
framework that synergically integrates multiple fuzzing opti-
mizations in multiple stages to maximize performance gains.
We extract four types of typical optimizations from popular
fuzzers and construct direct integrations and InteFuzz-
based conflict-aware integrations. In the experiments of
fuzzing 8 real-world programs from common Google fuzzer-
test-suite benchmark, results show that InteFuzz-based in-
tegrations cover more paths and branches and trigger more
crashes than direct integrations. We also utilize InteFuzz
to fuzz other widely used projects from GitHub. It detects
more bugs and 12 of them are successfully registered as CVEs.
Our future work will focus on developing dynamic priority
assigning mechanism to maximize performance gains and
supporting those minor optimizations with special interest.
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