
Weak-Assert: A Weakness-Oriented Assertion Recommendation
Toolkit for Program Analysis∗

Cong Wang1, Yu Jiang1∗, Xibin Zhao1, Xiaoyu Song2, Ming Gu1, Jiaguang Sun1
1 Beijing National Research Center for Information Science and Technology (BNRist)

School of Software, Tsinghua University, Beijing, China
2 Department of ECE, Portland State University, Portland, Oregon, 97201, USA

ABSTRACT

Assertions are helpful in program analysis, such as software testing

and verification. The most challenging part of automatically recom-

mending assertions is to design the assertion patterns and to insert

assertions in proper locations. In this paper, we develop Weak-

Assert 1, a weakness-oriented assertion recommendation toolkit

for program analysis of C code. A weakness-oriented assertion is

an assertion which can help to find potential program weaknesses.

Weak-Assert uses well-designed patterns to match the abstract

syntax trees of source code automatically. It collects significant

messages from trees and inserts assertions into proper locations

of programs. These assertions can be checked by using program

analysis techniques. The experiments are set up on Juliet test suite

and several actual projects in Github. Experimental results show

that Weak-Assert helps to find 125 program weaknesses in 26 actual

projects. These weaknesses are confirmed manually to be triggered

by some test cases.

The address of the abstract demo video is:

https://youtu.be/_RWC4GJvRWc

CCS CONCEPTS

• Software and its engineering → Software defect analysis;

Formal software verification;

KEYWORDS

assertion recommendation, program weakness, formal program

verification, program testing

1 INTRODUCTION

Assertions are helpful in program analysis. Program testing [1]

and verification [2] requires assertions to check specific properties

of programs. However, it is reported in [10] that the assertion

statements are only 0.03% among surveyed source code. Meanwhile,

it is time-consuming and error-prone to write assertions manually.

∗Yu Jiang is the correspondence author, and the work is supported by Tsinghua-Huawei
Collabration Project YBN2017010031
1The address of the tool, user manual and online version is: http://congwang92.cn/wa

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183471

There are only a few tools for assertion generation. Some of

them focus on the hardware area. Shobha et al present GoldMine,

a methodology for generating assertions [15]. In their method,

they generate assertions based on RTL (Register Transfer Level

Design). Zhang et al [6, 18] generate security critical properties

to verify the hardware processor. In the software area, Long et

al [11] generate assertions in Java programs by using active learning

techniques. Their work focuses on the correlation between the

learned assertions and the occurrence of a test case failure.

An assertion, which can help to find potential program weak-

nesses, is called a weakness-oriented assertion. The most challeng-

ing part of recommending such assertions is to design the weakness

patterns and to insert assertions in proper locations. Fig. 1 shows

an example of discovered weakness. In this code snippet, variable

data is declared as an integer in Line.6. This means the value of data

relies on the first parameter of main function. The parameter can

be negative. A weakness occurs when the system function memcpy

is called in Line.14.memcpy requires an “unsigned int” value for the

third parameter, but this example uses variable data, which means a

negative input may trigger a weakness in Line.14. We can insert an

assertion “assert(data>=0)” (Line.13). This assertion can help to find

the weakness by using program testing or verification techniques.

Therefore this assertion is a weakness-oriented assertion.

1 # include < s t d i o . h>
2 # include < s t r i n g . h>
3 # include < s t d l i b . h>
4 in t main (in t argc , char ∗ argv []) {
5 in t da t a = a t o i (a rgv [1]) ;
6 char sou r c e [1 0 0] ;
7 char d e s t [1 00]= " " ;
8 memset (source , 'A ' , 100 −1) ;
9 s ou r c e [100 −1] = ' \ 0 ' ;
10 i f (data <100) {
11 a s s e r t (data >=0) ;
12 memcpy (des t , source , d a t a) ;
13 d e s t [da t a]= ' \ 0 ' ;
14 }
15 return 0 ;
16 }

Figure 1: Example for Discovered Weakness

We developWeak-Assert, a weakness-oriented assertion recom-

mendation toolkit for program analysis of C code. Weak-Assert

applies to several types of program weaknesses, which qualify

for inclusion in Common Weakness Enumeration (CWE) 2. Weak-

Assert uses well-designed patterns (such as CWE134, CWE195, etc)

2Common Weakness Enumeration (CWE) is a community-developed list of common
software security weaknesses. http://cwe.mitre.org/index.html

69

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

to match the abstract syntax trees of source code automatically. It

collects meaningful messages(such as variable names, line num-

bers, etc) from trees and inserts assertions into proper locations

of programs. These assertions can be verified by using program

analysis techniques, such as program testing and verification. In

short, Weak-Assert needs a C source file and specified CWE types

as input. Automatically, Weak-Assert inserts weakness-oriented as-

sertions (if needed) into the source code and finally produce a new

file, which can be used to test or verify. We package Weak-Assert as

a toolkit, which can be used in a command line and online website

conveniently.

The experiments are set up on Juliet test suite [13] and several ac-

tual projects in Github. These actual projects consist of 26 distinct C

language projects, containing 38383 C files in total. Experimental re-

sults show that Weak-Assert helps to find 125 program weaknesses

in 26 actual projects. These weaknesses are confirmed manually to

be triggered by some test cases.

2 RELATEDWORK

Assertion Generation. There are only a few tools for assertion

generation. Some of them focus on the hardware area. Shobha et al.

present GoldMine, a methodology for generating assertions [15].

In their method, they generate assertions based on RTL (Register

Transfer Level Design). GoldMine is able to generate many asser-

tions per output in very reasonable runtimes. They claim that their

work is the first attempts to generate assertions through datamining

and static analysis of RTL source code. Zhang et al [6, 18] gener-

ate security critical properties to verify the hardware processor.

Their approach uses known design errata and machine learning

techniques to find invariants of hardware processor. Generated

assertions can be used in program verification and are critical to

security. In the software area, Long et al. [11] generate assertions in

Java programs by using active learning techniques. Their method

tries to avoid heavy-weight techniques like the symbolic execution.

Their work focuses on the correlation between the learned asser-

tions and the occurrence of a test case failure. Our previous work

uses machine learning techniques to decide whether programs need

assertions [16].

Program Analysis. There exist many works on program anal-

ysis, including program verification, program testing, etc. On pro-

gram verification, Henzinger [5] and Jhala [7] and Yu [8, 17] use

model checking techniques to verify the property of programs.

They check temporal logic properties of the models which are

constructed from programs. Cater et al. [2] provide a software veri-

fication ecosystem (SMACK) based on LLVM compiler. SMACK is

chosen to be integrated into our tool because it is a state-of-the-art

program verification tool to win the championship of ReachSafety

Track of SV-COMP’17 (2017 6th International Competition on Soft-

ware Verification). As for program testing, there also exist many

powerful techniques [9] [3]. Our tool generates assertions automat-

ically. Program testing approaches can be used manually to check

whether programs’ behaviors satisfy these assertions.

Our Difference of Weak-Assert. Previous assertion genera-

tion techniques are little relevant to program weakness. We develop

a weakness-oriented assertion recommendation toolkit for program

analysis. Our tool is able to recommend specific assertions, which

can help to find potential program weaknesses.

3 WEAK-ASSERT DESIGN

The overall framework of Weak-Assert is shown in Fig. 2. It con-

tains three modules: input processing module, code parsing module

and assertion recommend module. Firstly users can set the initial

parameters of Weak-Assert. Through specifying the parameters,

users provide the path of the source file or directory and choose

the weakness types. Then Weak-Assert parses the code of source

files to generate the abstract syntax trees. Finally, Weak-Assert

matches the abstract syntax trees with designed patterns and insert

assertions into proper locations automatically.

3.1 Main Modules

I. Input processing III.Assertion Recommend II. Code parsing

1. Target

Directory File

2. Weakness

CWE 134 / 195 / 674 /
690 / 789 / 835

3. Verify

Need / No Need

1. libClang

2. Filter

Sub-tree within file

1. Matching
Abstract syntax tree &

designed patterns

2. Capture
Types, locations and

variable names

3. Insertion
Insert assertions to
generate new files

Get abstract syntax
trees

4. Verify
Use SMACK to verify
assertions(if needed)

Figure 2: Framework of Weak-Assert

Input processing module. Firstly, the initial parameters of the

execution are set in the input processing module. Users are able

to apply Weak-Assert to a directory (the entrance of C language

projects) or a single source file. Program weakness types also can

be chosen. Weak-Assert support six different types (shown in Ta-

ble. 1) of common weakness defined in CWE (Common Weakness

Enumeration) [12]. Besides, users can choose to verify the asser-

tions inserted by Weak-Assert. We use an open source program

verification tool, SMACK [2], to verify the assertions.

Table 1: Supported Weakness Types

ID Weakness Name

134 Use of Externally-Controlled Format String
195 Signed to Unsigned Conversion Error
674 Uncontrolled Recursion
690 Unchecked Return Value to NULL Pointer Dereference
789 Uncontrolled Memory Allocation
835 Loop with Unreachable Exit Condition (’Infinite Loop’)

The weakness types are shown in Table. 1. For example, the

code snippet in Fig. 1 may suffer from the weakness “Signed to

Unsigned Conversion Error” (ID.195). Variable data is not defined

as an unsigned integer, which gives it the chance to be negative.

Also, we can give an example (shown in Fig. 3) for ID.134. This code

snippet suffers from “Use of Externally-Controlled Format String”.

Executing this program in a command line, we get “Segmentation

fault (core dumped)” because “%s,%s” in Line.6 is a kind of code

attack to read values from stacks.

70

1 # include < s t d i o . h>
2 in t main (in t argc , char ∗ argv []) {
3 char ∗ d a t a ;
4 char d a t a Bu f f e r [1 00]= " " ;
5 d a t a = d a t a Bu f f e r ;
6 s t r c p y (data , "%s ,% s f i x % e d s t r i n g t e s t ") ;
7 f p r i n t f (s t dou t , d a t a) ;
8 }

Figure 3: Example for Weakness ID.134

Code parsing module. In code parsing module, Weak-Assert

integrates libClang [14], which provides a C interface to an abstract

syntax tree. The abstract syntax tree is filtered to remove those

which are included from other files (no matter source files or head

files).

Assertion recommendmodule. In assertion recommend mod-

ule, Weak-Assert matches the abstract syntax trees with patterns,

which are corresponding to weaknesses. Through traversing the

entire tree, we capture the weakness types, locations and variable

names. Then Weak-Assert inserts assertions to generate new files.

These assertions are inserted into specified locations in order to be

detected before the weaknesses are triggered. Finally, if users want

to verify the assertions, which are recommended, Weak-Assert is

able to call SMACK [2] to finish the verification tasks automatically.

To design the matching patterns is a significant task in our

work. Every pattern corresponds to a type of program weakness.

The pattern should identify the pivotal node in an abstract syn-

tax tree. For example, weakness ID.674 “Uncontrolled Recursion”

needs to ensure that the recursion would stop after a number of

loops. We choose the node who has the attribute kind as Cur-

sorKind.FUNCTION_DECL. Then the function name can be captured

from the attribute displayname of the node. The function name is

saved temporarily before come to CursorKind.FUNCTION_DECL

node. Thanks to the depth-first search strategy, we could identify

whether this function is recursive, just before we come to another

program function. Fig. 4 shows an example of this type of weak-

ness. The statement in Line.4 recalls the program function itself

but reserves no exits.

1 void he lpe rBad () {
2 / ∗ FLAW: t h i s f u n c t i o n c au s e s i n f i n i t e r e c u r s i o n ∗ /
3 he lpe rBad () ;
4 }

Figure 4: Example for Weakness ID.674

1 in t i t e r a t o r _ t empv a l u e = 0 ;
2 s t a t i c void he lpe rBad () {
3 i t e r a t o r _ t empv a l u e +=1 ;
4 a s s e r t (i t e r a t o r _ t empv a l u e <=100000) ;
5 / ∗ FLAW: t h i s f u n c t i o n c au s e s i n f i n i t e r e c u r s i o n ∗ /
6 he lpe rBad () ;
7 }

Figure 5: Modified Example for Weakness ID.674

Matching is not enough. Automatically Weak-Assert captures

messages from the pivotal node in an abstract syntax tree. The

messages include variable names and locations.We use the locations

to slice the source file and insert the assertions spliced by variable

names and string template. For example, the code snippet in Fig. 4

is transformed to Fig.5. Manually we set a maximum number of

iteration (Line. 4).

3.2 Usage

Weak-Assert can be used as a command line tool. The executing

parameters are defined in Table 2. For example, users can execute a

script as: weakassert -d /XXX -w 134,195,789. This script calls our

tool to recommend assertions for C source files in directory “ /XXX”

especially for program weakness “CWE134, 195 and 789”.

Table 2: Parameter Description of Weak-Assert

Parameter Description

-d <directory> <directory> is the entrance of C language projects.

-f <file> <file> is a single source file.

-w <weakness ID> <weakness ID> is the list of weakness types, separated with comma.

-v if you want to verify the assertions, use this parameter.

Besides, we provide an online version (Weak-Assert Online),

which holds brief functions of Weak-Assert. Users can access it

from web explorers 3. Fig. 6 shows the interface of Weak-Assert

Online. Users can write their C programs on the left side and press

“Execute” button to insert weakness-oriented assertions. The new

code snippet is displayed on the right side.

Figure 6: Interface of Weak-Assert Online

4 EXPERIMENT

To evaluate the performance of Weak-Assert, we apply the tool to

real-world projects. In this section, we describe the experimental

setup and present the weaknesses detected by Weak-Assert.

Experimental SetupWeak-Assert is trained on Juliet test suite.

The weaknesses in programs of specified type (ID.134, 195, 674, 690,

789, 835) can be detected by testing recommended assertions. We

apply Weak-Assert on real-world projects, which are downloaded

from Github [4]. Table. 3 shows the information of the projects.

It contains 26 real C projects, with 38383 C language source files.

Our experiment is to apply Weak-Assert on these projects to insert

assertions. Then these assertions are verified by test cases manually.

71

Table 3: Actual Projects in Github

Project Name Disk(MB) C Files Weak(ID.195)

1.linux-master 785 25568 33
2.php-src-master 76 1022 1
3.FFmpeg-master 54 2431 27
4.Cygwin-master 53 3374 10
5.emscripten-master 47 2412 9
6.Telegram-master 21 521 4
7.Arduino-master 19 189 1
8.obs-studio-master 12 668 2
9.vim-master 12 135 2
10.h2o-master 11 356 3
11.git-master 8.7 403 4
12.mpv-master 6.5 326 6
13.libuv-master 3.1 267 1
14.ijkplayer-master 3 92 2
15.netdata-master 3 106 1
16.toxcore-master 2 72 1
17.masscan-master 1.7 84 2
18.tmux-master 1.7 162 2
19.torch7-master 1.1 50 2
20.JSPatch-master 0.872 4 1
21.jq-master 0.868 20 1
22.memcached-master 0.768 25 4
23.twemproxy-master 0.764 34 1
24.The-Art-Of-Programm 0.48 36 3
25.the_silver_searcher 0.316 12 1
26.wrk-master 0.284 14 1
Data in total 1125.152 38383 125

1 typedef s t ruc t {
2 unsigned char ∗ by t e s ;
3 in t max , count ;
4 } B u f f e r ;
5 void expand_buf (Bu f f e r ∗ buf , in t l e n) {
6 i f (buf−>max< l en) {
7 buf−>max= l en +20 ;
8 i f (buf−>by t e s)
9 buf−>by t e s = (unsigned char ∗) r e a l l o c (

buf−>bytes , buf−>max) ;
10 e l se {
11 a s s e r t (buf−>max>=0) ;
12 buf−>by t e s = (unsigned char ∗) ma l l o c (buf

−>max) ;
13 }
14 }

Figure 7: Example of Weakness Detected in Actual Projects

Experimental Results. We apply Weak-Assert on 26 differ-

ent actual projects to insert assertions corresponding to CWE.195

(Signed to Unsigned Conversion Error). As shown in Table. 3, real

weaknesses, which can be triggered by some test cases, are shown

in column “Weak(ID.195)”. Totally, we find 125 real weaknesses by

applying Weak-Assert to insert assertions.

We classify the weaknesses into three groups based on the rea-

sons: “result of undetermined calculation”, “signed definition” and

“influenced by input”. “result of undetermined calculation” refers

to the situation when the value of a variable is calculated by an

undetermined operation. The operation may result in negative val-

ues. “signed definition” refers to the situation when the variable

is defined as a signed one. In most cases, these variables are pa-

rameters of program functions, which have the chance to be less

than zero. “influenced by input” refers to the situation when the

value of variable might be influenced by users’ input, such as file

contents and “argv”. These 125 weaknesses consist of 70 “result of

undetermined calculation”, 51 “signed definition” and 4 “influenced

by input”. Details of these weaknesses can be accessed 4.

3http://congwang92.cn/weakassert/
4http://congwang92.cn/wa/result.html

Fig. 7 shows an example of “signed definition” weakness detected

in actual projects. It is a code snippet in file “crlf.c” of the project

“Cygwin-master”. The assertion in Line.11 may fail because buf-

>max is defined as an integer, which could be less than zero.

5 CONCLUSION

In this paper, we presentWeak-Assert, a weakness-oriented asser-

tion recommendation toolkit for program analysis. Weak-Assert

can help to generate weakness-oriented assertions automatically. It

uses well-designed patterns to match the abstract syntax trees of

source code automatically, collects significant messages from trees

and inserts assertions into proper locations of programs. These

assertions can be checked by using program analysis techniques,

such as program testing and verification. The experiments are set

up on Juliet test suite and several actual projects in Github. Experi-

mental results show that Weak-Assert helps to find 125 program

weaknesses in 26 actual projects. These weaknesses are confirmed

manually to be triggered by some test cases.

REFERENCES
[1] Roy Budhai, Brian Chen, Teresa Su, and Sheldon Sequeira. 2016. Testing applica-

tion code changes using a state assertion framework. (2016).
[2] Montgomery Carter, Shaobo He, Jonathan Whitaker, and Michael Emmi. 2017.

SMACK software verification toolchain. In Ieee/acm International Conference on
Software Engineering Companion. 589–592.

[3] Yao Hua Dong and Ji Dong Peng. 2010. The Realization of Page Load-stress
Testing with LoadRunner. Journal of Jiangxi University of Science & Technology
(2010).

[4] Github. [n. d.]. Github. https://github.com/. ([n. d.]).
[5] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2003.

Software verificationwith BLAST. InModel Checking Software. Springer, 235–239.
[6] Matthew Hicks, Cynthia Sturton, Samuel T King, and Jonathan M Smith. 2015.

Specs: A lightweight runtime mechanism for protecting software from security-
critical processor bugs. ACM SIGPLAN Notices 50, 4 (2015), 517–529.

[7] Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM Com-
puting Surveys (CSUR) 41, 4 (2009), 21.

[8] Yu Jiang, Hehua Zhang, Han Liu, William Hung, Xiaoyu Song, Ming Gu, and
Jiaguang Sun. 2014. System reliability calculation based on the run-time analysis
of ladder program. IEEE Transactions on Industrial Electronics (2014).

[9] Nick Langley. 2003. Winrunner automates app testing. Computer Weekly (2003).
[10] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre F Baldi.

2008. Mining internet-scale software repositories. In Advances in neural informa-
tion processing systems. 929–936.

[11] H. Pham Long, Ly Ly Tran Thi, and Jun Sun. 2017. Assertion Generation through
Active Learning. In Ieee/acm International Conference on Software Engineering
Companion. 155–157.

[12] Robert A Martin. 2007. Common weakness enumeration. Mitre Corporation
(2007).

[13] NIST. [n. d.]. Software Assurance Reference Dataset. https://samate.nist.gov/
SRD/testsuite.php. ([n. d.]).

[14] S. Schaub and B.A. Malloy. 2014. Comprehensive analysis of C++ applications
using the libClang API. (2014).

[15] Shobha Vasudevan, David Sheridan, Sanjay Patel, and David Tcheng. 2010. Gold-
Mine: Automatic assertion generation using data mining and static analysis. 46,
2 (2010), 626–629.

[16] Cong Wang, Fei He, Xiaoyu Song, Yu Jiang, Ming Gu, and Jiaguang Sun. 2017. As-
sertion Recommendation for Formal Program Verification. In Computer Software
and Applications Conference. 154–159.

[17] Hehua Zhang, Yu Jiang, William NN Hung, Xiaoyu Song, Ming Gu, and Jiaguang
Sun. 2014. Symbolic analysis of programmable logic controllers. IEEE Trans.
Comput. 63, 10 (2014), 2563–2575.

[18] Rui Zhang, Natalie Stanley, Christopher Griggs, AndrewChi, and Cynthia Sturton.
2017. Identifying Security Critical Properties for the Dynamic Verification of
a Processor. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,
541–554.

72

