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Abstract—Program obfuscation is a common practice in soft-
ware development to obscure source code or binary code, in order
to prevent humans from understanding the purpose or logic of
software. It protects intellectual property and deters malicious
attacks. While tremendous efforts have been devoted to the
development of various obfuscation techniques, we have relatively
little knowledge on how to most effectively use them together. The
biggest challenge lies in identifying the most effective combination
of obfuscation techniques.

This paper presents a unified framework to optimize program
obfuscation. Given an input program P and a set T of obfus-
cation transformations, our technique can automatically identify
a sequence seq = 〈t1, t2, · · · , tn〉 (∀i ∈ [1, n]. ti ∈ T ), such
that applying ti in order on P yields the optimal obfuscation
performance. We model the process of searching for seq as a
mathematical optimization problem. The key technical contribu-
tions of this paper are: (1) an obscurity language model to assess
obfuscation effectiveness/optimality, and (2) a guided stochastic
algorithm based on Markov chain Monte Carlo methods to search
for the optimal solution seq .

We have realized the framework in a tool Closure� for
JavaScript, and evaluated it on 25 most starred JavaScript
projects on GitHub (19K lines of code). Our machinery study
shows that Closure� outperforms the well-known Google Closure
Compiler by defending 26% of the attacks initiated by JSNice.
Our human study also reveals that Closure� is practical and can
reduce the human attack success rate by 30%.

Keywords-program obfuscation; obscurity language model;
markov chain monte carlo methods;

I. INTRODUCTION

Software obfuscation is a deliberate act to hide the intention

and logic of programs by obscuring source or executable code

with semantics-preserving program transformations. It is a

common approach against reverse engineering, and serves

multiple purposes in practice, e.g., protecting intellectual

property, deterring malicious attacks. In this paper, we refer to

any attempt to reverse engineer obfuscated code as an attack.

To defend against potential adversaries, decades of research

has been devoted to developing various obfuscation techniques

[1]–[6]. Some of these techniques manipulate the syntactical

representation of programs (e.g., renaming variables, changing

format), while other advanced techniques complicate the control

and data flow of programs under obfuscation.

These obfuscation techniques can be effective in deterring

human adversaries who attempt to manually crack the obscurity

by reading the code directly or with the help of static/dynamic

analyzers. However, they might not be sufficient for deterring

‡Yu Jiang is the corresponding author.

learning-based computer adversaries, a new and promising

class of deobfuscators. These adversaries [7], [8] leverage

coding features mined from a large corpus of source code

to recover useful information (e.g., identifier names, types)

from obfuscated programs. Their evaluation results have

demonstrated the potential of this class of deobfuscators at

attacking obfuscated code.

The threat posed by learning-based adversaries motivates

us to revisit the research of obfuscation. Although already

having a large number of obfuscation techniques, we have

little knowledge on how to coordinate them to produce better

obfuscation result. Therefore, in this paper, we propose an

automatic approach to optimize the obfuscation performance

for a program. Specifically, given an input program P and a

set T of obfuscation transformations, our technique identifies

a sequence seq = 〈t1, t2, · · · , tn〉 (∀i ∈ [1, n]. ti ∈ T ), such

that applying ti in order on P yields the optimal obfuscation

performance. (We refer to this sequence as a configuration of

obfuscation transformations.)

We model the process of searching for seq as a mathematical

optimization problem, i.e., finding an optimal configuration

from all available configurations. Specifically we face the

following challenges.

Challenge 1. We need an objective function to measure

the obscurity of obfuscated programs. It is used to compare

configurations in terms of obfuscation performance, and

navigate the search process towards the optimal configurations.

However there is no explicit, precise definition of such a

function yet, since a number of factors can affect program

obscurity, such as syntax, semantics and structure of programs,

and even experience of adversaries.

Challenge 2. The search space for the optimal configuration

is unbounded. It is infeasible to enumerate every configuration

during the optimization process. The state-of-the-art obfusca-

tors, such as Google Closure Compiler [9], specify a fixed

order of obfuscation transformations for all programs. However,

our evaluation in §VI shows that such a statically specified
configuration cannot always yield good obfuscation results for

various programs.

Challenge 3. Different obfuscation transformations might

conflict with each other on the same source code, causing the

obscurity to degrade (e.g., §V Listing 5a, 5b and 5c). Given

an obfuscation transformation t, instead of applying t to the

whole program P , it is ideal to apply t to the rightful code

regions in P , so that multiple obfuscation transformations can
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be coordinated to achieve the optimal obscurity.

Guided Obfuscation Optimization. To overcome the three

challenges, we propose a novel framework which automatically
optimizes obfuscation for an input program.

(1) Obscurity Language Model (OLM) First, we propose an

obscurity language model to assess the obfuscation. In particu-

lar, it measures obscurity based on the code perplexity of the

obfuscated program against a large corpus of source code (e.g.,
all the unobfuscated source code available on the web).

(2) MCMC-Based Search Second, we realize the optimiza-

tion process by using Markov chain Monte Carlo (MCMC) [10]

methods to search for the optimal configuration of obfuscation

transformations. Our search strategy can efficiently sample the

huge search space, so that within a bounded period of time

we can find an optimal configuration.
(3) Program Decomposition Lastly, we stochastically decom-

pose the large input program into fine-granularity units (e.g.
functions), optimize the obfuscation for each unit individually,

and then compose the obfuscated units back into a whole pro-

gram. This decomposition process can decrease the likelihood

of conflicts between obfuscation transformations.

We have realized the framework and instantiated it for

JavaScript programs into a tool Closure�. The evaluation on

real-world popular open-source projects (over 19K lines of

code) demonstrates the ability of Closure� at combating the

state-of-the-art deobfuscator JSNice [7]. In particular, Closure�

outperforms Google Closure Compiler (Closure) by 26% in

obfuscation performance, namely, Closure� protects 26% more

information from being recovered by JSNice than Closure. In

cases where Closure can already obfuscate the source code

well, Closure� can still achieve 22% improvement. In order

to ensure reproducibility, we have open-sourced Closure� at

https://bitbucket.org/njaliu/closure-star-tool.

Contribution. We summarize our contributions as follows.

• We propose an obscurity language model, the first practical

metric to assess the obscurity of obfuscated programs.

• We propose an effective and efficient MCMC-based

algorithm to optimize program obfuscations.

• The comprehensive evaluation results demonstrate the

effectiveness of our proposed technique. Compared to

Google Closure Compiler, our realization for JavaScript

programs exhibits 26% and 30% improvement on deterring

learning-based and human attacks respectively.

Paper Organization. The remainder of the paper is or-

ganized as follows. §II introduces necessary background

knowledge. §III presents the overall framework. §IV details

the obscurity language model and §V elaborates the guided ob-

fuscation optimization. We present our evaluation of Closure�

in §VI and survey related work in §VII. §VIII concludes the

paper.

II. BACKGROUND

A. Program Obfuscation

Program obfuscation is a set of semantics-preserving program

transformations to conceal programming intentions. It makes

programs difficult to be understood by manual and automatic

analyses. In this subsection, we describe the most common

obfuscation transformations in the literature.

Name Obfuscation. This category of obfuscation transfor-

mations replaces identifier names (e.g., variables, functions,
classes) with meaningless or misleading ones. Take a declara-

tion var len as an example. It is straightforward to conjecture

that this variable is related to length. However, if the variable

name is obfuscated to a, it will take more efforts to make the

same conjecture.

Data Obfuscation. This category obfuscates data flows

in programs via reusing variables, inlining variables, value

encoding, etc.. For example, with var max = f(arr);

display(max); we can easily figure out that the code is to

select and display the maximal item in an array. But with

the variable max inlined as display(f(arr)), we can hardly

speculate the intention.

Control Flow Obfuscation. This category obfuscates the

control flows of programs. Typical operations include inserting

opaque predicates [1] whose value is hard to infer, flatten-

ing [11] and function inlining which can complicate the control

flow and delay human understanding.

Layout Obfuscation. This category removes formatting (e.g.
indentations, line breaks), and compresses the source code to

reduce the readability and size of the code.

B. Learning-Based Adversary

Traditional adversaries of obfuscation aim at manually

cracking the program obscurity, but they are limited by

human experience. With the rapid development of machine

learning techniques and accessibility of high-quality open-

source projects, adversaries resort to learning-based attacks.

Generally, such attacks try to recover information from obfus-

cated program elements, e.g., giving a variable a meaningful

name to expose its functionality.

Usually, the attack involves two phases. First, a knowledge

model is built from a large corpus using machine learning

algorithms. The model is able to estimate the probability for

a program element to occur in the corpus. For example, the

model can tell that file = open(‘log’,‘w’) is more likely

to occur in a Python program than a = open(‘log’,‘w’).

Next, the adversary deobfuscates a program by querying the

model, annotating program elements (e.g., assigning meaningful

names), and optimizing the annotations so that the deobfuscated

program is most “similar” to the corpus.

We take JSNice [7] as a powerful instance. For name

obfuscation as in §II-A, JSNice can correctly predict 63.4%

of the obfuscated names [7], making the obfuscation greatly

compromised. Figure 1a shows an obfuscated code with very

short argument and variable names, which is difficult to

understand. However, after JSNice recovers the names as shown

in Figure 1b, we can easily know the function is copying an

input string by iteratively retrieving its substrings. Even for

complex large programs, JSNice can recover sensitive code

elements within an acceptable time bound [7].
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function chunkData(e, t) {

var n = [], i = 0;

var r = e.length;

for (; i < r; i += t) {

if (i + t < r) {

n.push(e.substring(i, i + t));

} else {

n.push(e.substring(i, r));

}

}

return n;

}

(a) Before attack

function chunkData(str, step) {

var colNames = [], i = 0;

var len = str.length;

for (;i < len;i += step) {

if (i + step < len) {

colNames.push(str.substring(i, i + step));

} else {

colNames.push(str.substring(i, len));

}

}

return colNames;

}

(b) After attack

Fig. 1: A code snippet deobfuscated by JSNice.

C. Language Model

Language models (LM) assign probabilities to different

sequences of words. The probabilities, in turn, indicate how

likely the sequence is to occur. In the context of programming

languages, researchers have investigated such probabilistic

nature (called naturalness) of programs [12] and highlighted its

promising potential in handling traditional software engineering

tasks [13]–[15], e.g., for code completion, given code snippet

for{, the LM can predict for{int i=0;i< is the most possible

code to follow. For a token sequence s = t1t2 · · · tn, its

LM probability is P (s) = P (t1) ·
n∏

i=2

P (ti|t1, · · · , ti−1). Each

conditional probability determines how likely a subsequence

is to follow its prefix. In practice, estimating the conditional

probability is usually difficult or even infeasible due to the

huge number of prefixes. A practical approximation is the

n-gram model, which assumes that the occurrence of a token

is dependent on a limited prefix with length n. This way,

P (ti|t1, · · · , ti−1) is approximated to P (ti|ti−n+1 · · · ti−1),
which is computed by counting the occurrences below

P (ti|t1, · · · , ti−1) =
count(ti−(n−1) · · · ti−1, ti)

count(ti−(n−1) · · · ti−1)
(N-gram)

Given a program s = t1t2 · · · tn, to better interpret its

naturalness based on an LM M, we use the measurement

perplexity or its log-transformed version cross-entropy [16],

defined as HM(s) = − 1
n log pM(t1 · · · tn). Based on the n-

gram (n = k), the formulation accordingly amounts to

HM(s) = − 1

n

n∑
1

log pM(ti | ti−k+1 · · · ti−1) (Perplexity)

Commonly, code with high perplexity is “oddly” written. In

our setting, such oddness is likely a result of obfuscation. A

well-designed LM should be able to identify to what degree a

program is obfuscated via the perplexity measurement.

III. PROBLEM FORMULATION & OVERALL FRAMEWORK

In this section, we formulate the problem of obfuscation op-

timization, and briefly introduce the workflow of our proposed

approach.

A. Problem Formulation

Generally, obfuscation refers to program transformations

without changing the program’s behavior. Although already

having a large number of obfuscation techniques, we have

little knowledge on how to coordinate them to produce better

obfuscation result. Therefore, in this paper, we propose an

automatic approach to optimize the obfuscation performance

for a program.

Definition 3.1 (Obfuscation Optimization): Given an input

program P and a set T of obfuscation transformations, the

problem of obfuscation optimization identifies a sequence

seq = 〈t1, t2, · · · , tn〉 (∀i ∈ [1, n]. ti ∈ T ), such that applying

ti in order on P yields the optimal obfuscation performance.

Configuration. We refer to the sequence seq as a config-
uration of obfuscation transformations. The state-of-the-art

obfuscators enforce a statically determined configuration for

every input program. Their belief behind is works for one,
works for all. Our technique distinguishes itself from those

by applying input-dependent obfuscation transformations. That

is, for each input program, we aim to find the most suitable

configuration.

Measuring Optimality. The optimality of a configuration

measures the degree of difficulty for an adversary to deobfus-

cate an obfuscated program. As stated in Challenge 1 in §I,

there is no explicit, precise definition of such a measure yet.

Therefore, in this paper, we propose an obscurity language

model (OLM) (detailed in §IV) to measure the optimality

by analyzing the structural similarity between an obfuscated

program and a large corpus of programs that are available

online. Specifically, this is done by computing the perplexity
(Equation Perplexity). The higher perplexity an obfuscated

program has, the odder it is w.r.t. the corpus, and the harder it

is for an adversary to deobfuscate the program.

B. Workflow

As aforementioned, we model the search process for the

optimal configuration of obfuscation transformations as a

mathematical optimization problem. That is, we iteratively

explore the obfuscation space to find better configurations such

that the obscurity of programs is improved. In particular, we

designed a search algorithm based on Markov chain Monte

Carlo methods, which steers the search process towards the

optimal configuration with the guidance of the obscurity

language model.

The general workflow of our framework is shown in Figure 2.

It takes as input the source file for obfuscation and the

set T of available obfuscation transformations, and outputs

an obfuscated program by an optimal configuration. The

obfuscation process can be divided into the following four

components.

Parse At first, the input source file is parsed into an abstract

syntax tree (AST). The other components all work on

ASTs.

Search We decompose the original program at function level.

The obfuscation engine then randomly selects a set of

functions to form a partition and generate a configuration
to obfuscate it.

Assess We enclose the obfuscated code by the search compo-

nent into a query to the OLM. Then OLM computes the
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Fig. 2: The workflow of the proposed obfuscation framework.

perplexity of the code against a corpus of programs, and

returns it as a “score” to the obfuscation engine.

Finalize After a parameterized number of iterations of search
and assess (e.g., 10K iterations), we choose the iteration

with the highest perplexity score and output the obfuscated

program in that iteration as the final result.

In a nutshell, our framework iteratively searches for more

effective configuration that produces better obfuscation result.

The search process is guided by the OLM so that it can

eventually converge to an optimal configuration.

IV. OBSCURITY LANGUAGE MODEL

This section describes the general process to build a language

model for software engineering tasks, difference and challenge

of building an obscurity language model, and how we address

the challenges.

A. Building a General Source Code Language Model

As stated in [12], building a general language model for

source code aims at capturing the statistical regularities of

code. This model is then used for software engineering tasks

at the source code level, such as code completion. Therefore,

in order to build such a model, a program is first tokenized

and represented as a sequence of lexemes. Finally, an n-gram

model is built by computing the conditional probability of a

lexeme ti given its prefix 〈ti−n+1, · · · , ti−1〉 with the formula

in Equation N-gram.

Recent techniques [14], [15] can build better language

models to capture the regularities of programs, by either

associating the lexemes with semantic information or taking

the localness of lexemes into account during the model training

phase. However, both still work on the lexeme level.

B. Challenges of Building Obscurity Language Models

Different from a traditional language model for software

engineering tasks at unobfuscated source code level (e.g.,
code completion) [12], [14], [15], our OLM aims to capture

the remaining regularities of software after obfuscation. In

other words, the OLM measures the perplexity between the

obfuscated program and a large corpus of programs.

However, if we use the traditional language model, an

obfuscated program is inherently perplex as its variables are

renamed to short, meaningless names, and data/control flows

are altered. Our OLM should be resilient to the perplexity

induced by obfuscators, and should be able to measure the

remaining regularities induced by the source code itself. The

fewer regularities of the original source code remain, (i.e.,
higher perplexity) the better the configuration that obfuscates

the program is. Therefore in this case, representing programs

with sequences of lexemes is insufficient and even impractical.

We detail the challenges in the following.

1) Inherent Perplexity of Obfuscated Programs: An obfus-

cated program has short and meaningless variable names, which

results in an inherently high perplexity if it is measured by

the traditional software engineering language model over the

lexeme-based program representations. An illustrative example,

which contains two obfuscated versions of JQuery1 is shown

in Figure 3.

function cloneCopyEvent(e, a) {

var t, s, d, n, r, v, i, c;

if (1 === a.nodeType) {

if (predicate(e)) {

n = G0.access(e), r = G0.set(a, n);

c = n.events;

delete r.handle,

r.events = {};

for (bca(t,s,c,d))

jQuery.event.add(a, d, c[d][t]);

}

G1.hasData(e) && (v = G1.access(e),

i = jQuery.extend({}, v), G1.set(a, i));

}

}

(a) Variable renaming

function cloneCopyEvent(d, e) {

var b, f, a, c;

if (1 === e.nodeType) {

if (predicate(d)) {

c = G0.access(d), b = G0.set(e, c);

c = c.events;

delete b.handle,

b.events = {};

for (bca(a,b,c,f))

jQuery.event.add(e, a, c[a][b]);

}

G1.hasData(d) && (a = G1.access(d),

a = jQuery.extend({}, a), G1.set(e, a));

}

}

(b) Variable renaming and reusing

Fig. 3: Inherent perplexity due to obfuscated names

Figure 3a is obfuscated with variable renaming, and Fig-

ure 3b is obfuscated with variable renaming and reusing. Both

code snippets have high perplexity when they are measured with

the original source code, as their lexeme-based representations

are very different from that of the original one (namely, all local

variables and function arguments have different names/lexemes).

Thus, the traditional language model cannot differentiate which

version is better obfuscated.

However, Figure 3b is better obfuscated, as its data flows

are also obfuscated by reusing 4 of the 8 local variables in

Figure 3a. Using JSNice [7] as an automatic adversary to attack

the two code snippets also confirms this. Specifically, 1 variable

is obfuscated in Figure 3a and 5 variables are obfuscated in

Figure 3b. Figure 3b outperforms Figure 3a by protecting

more information. Our OLM is expected to differentiate the

superiority of Figure 3b in terms of obfuscation quality.

C. Obeme-Based Obscurity Language Model

To address the challenges above, we use obemes to build an

OLM instead of lexemes. Generally, an obeme is an enhanced

representation of a token by considering its lexeme, type and

variable ordering. Its advantage is the capability of handling

inherent obscurity of obfuscated source code. Given a token

tk = (l, t) (where l is the lexeme and t is the token type), then

1https://github.com/jquery/jquery/blob/master/src/manipulation.js
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Fig. 4: A simple function and its corresponding AST.

its obeme is defined as follows.

obeme(tk) =

⎧⎪⎨
⎪⎩

v + order, tk is a variable or an argument

t, tk is a literal, e.g., 1, “string”
l, otherwise

Variables and Arguments. If the token tk is a local variable

or a function argument, we use its variable ordering in its

scope as its obeme. Given the abstract syntax tree (AST) of a

program, we define the order ∈ N of a local variable to be the

relative position in the sequence generated by an AST traversal.

Specially, the order of a function argument is set to be the top

within the function scope according to its relative position in

the argument list.

An example is shown in Figure 4. The function sum has

two arguments min and buf, and one local variable total.

Under pre-order traversal, min, buf and total are visited in

turn. Thus, their orders are 1, 2 and 3 respectively. To avoid

name clashing with integer literals, we prefix the order with a

marker string ‘v’ to form an obeme. In this way, variables are

evaluated for perplexity based on the program structure rather

than their names.

Literals. For literals in programs (e.g., strings, numbers,

characters), we use their token types as their obemes, as we

focus on structural similarity between obfuscated programs

and program corpus and any difference between literals has

little impact on the structural similarity.

Others. For other types of tokens, (e.g., key words, paren-

theses, brackets), we use their lexemes as the obemes.

D. Obfuscation Assessment

After training an OLM from the obeme-based representations

of a program corpus, we can quantitatively measure how

obscure a program is with its perplexity. The measurement

serves as the guidance in each optimization iteration described

in §III, steering the search process towards better obfuscation

configurations that can produce more perplex obfuscated

programs. A key property of the obscurity LM is the highly

positive correlation between perplexity and program obscurity,

which we have validated empirically in §VI-D.

V. GUIDED OBFUSCATION OPTIMIZATION

This section details the MCMC-based obfuscation engine,

and our main strategy to eliminate conflicts between obfuscation

transformations at the function level.

A. MCMC-Based Obfuscation Optimization

Given a program P to obfuscate, an OLM M built from

a corpus of programs, a set T of available obfuscation

transformations and a configuration seq , the perplexity of P ′

that is obfuscated from P by seq (i.e., P ′ = seq(P )) is denoted
as

Δ(P ; seq ;M) = HM(seq(P )) (Objective Function)

As aforementioned, the perplexity measures the obscurity and

serves as the objective function for optimizing obfuscation.

Therefore, the goal of the obfuscation optimization can be

formally expressed as

seq∗ = argmaxΔ(P ; seq ;M)

That is, find an optimal configuration seq∗ such that maximizes

the perplexity of the obfuscated version of P .

In this paper, we employ MCMC sampling [10] to find seq∗.
MCMC has been proved and demonstrated to be effective at

estimating a target probability distribution for which the direct

sampling is difficult. For example, in the setting of obfuscation,

the space of configurations is unbounded if we allow dupli-

cations of obfuscation transformations in a configuration. In

such cases, MCMC can mitigate the complexity by sampling

more often in the region of configurations which yields better

perplexity.

Specifically, we use the Metropolis-Hastings algorithm to

sample a sequence of configurations 〈seq0, seq1, . . . , seqn〉 in

the configuration space. The target probability distribution from

which we draw samples is defined as

η(P ; seq ;M) =
1

Z
exp(σ ·Δ(P ; seq ;M)) (1)

As described in [17], σ is a constant and Z is a partition

function that normalizes the target distribution. A significant

property of η is that higher perplexity leads to higher prob-

ability. Suppose seq ′ is the proposed candidate sample, the

sampling process accepts the candidate and moves to seq ′ with

a probability as below:

A(seq → seq ′;P ;M) = min(1,
η(P ; seq ′;M)

η(P ; seq ;M)
) (2)

Particularly, Metropolis-Hastings algorithm enables us to

accept a new sample without computing the partition function

(Z in Equation 1) since Z is canceled out by the division.

The overall MCMC based optimization process is shown in

Algorithm 1. On line 1, the initial sample is a configuration

obtained by shuffling all the transformations in T . Then at each

iteration of the optimization, we propose a new sample based on

the current sample. This is realized by the function mutate on

line 3. Specifically, the mutation is done by updating a random

small number of transformations in the current configuration.
The update can be removal, insertion and substitution. Next, we

evaluate the new sample by querying the acceptance function

and choose to replace the current sample with the new one

(line 4-5). After the optimization iteration, we reproduce the

recorded best obfuscation and output the obfuscated program.
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Algorithm 1: MCMC-Based Obfuscation Optimization.

Input : P is the input program.
T is the set of obfuscation transformations.
M is the language model trained as in §IV.
N is the number of iterations.

Output : the obfuscated version produced by the optimal configuration.
1 seq ← shuffle(T ), seq∗ ← seq
// Generate MCMC samples.

2 for i← 1 to N do
3 seq ′ ← mutate(seq)

// rand() simulates the uniform distribution.
4 if rand() < A(seq → seq ′;P ;M) then
5 seq ← seq ′
6 if Δ(P ; seq;M) > Δ(P ; seq∗;M) then
7 seq∗ ← seq

// Reproduce the best obfuscation.
8 return seq∗(P )

B. Conflicting Function Optimization
As introduced in §I, our framework is able to identify

the rightful code regions to apply the suitable obfuscation

transformations. This is motivated by an observation we found

in the very beginning of this project, that a configuration

sometimes fails to improve the obscurity of multiple functions

at the same time.
1) An Example: Figure 5 shows a real-world example.

The code snippet is extracted from the popular open-source

JavaScript project jade2, which is a widely-used (9,637 stars

on GitHub) templating language for producing XML like

documents.
In the example, we consider the obfuscation transforma-

tion — folding constants foldConstants. When enabled,

foldConstants recognizes and evaluates constant expressions,

and uses the values to replace the expressions. Figure 5a shows

the original source code (two functions handleTemplateCache

and bracketExpression). Existing obfuscators apply transfor-

mations on the whole program, i.e., for this example both

functions. By disabling and enabling foldConstants, two

obfuscated programs are generated in Figure 5b and 5c re-

spectively. For example, undefined is folded to 0 in Figure 5c.
Then, we employ JSNice to recover names for local variables

and function arguments. The recovered names are shown

in comments before each function. We found that: when

foldConstants is disabled, function handleTemplateCache is

well protected (3 variable obfuscated) but bracketExpression

is not (0 variables obfuscated); when foldConstants is

enabled, bracketExpression is well protected (2 variable

obfuscated) while handleTemplateCache is not (2 variables

obfuscated). That said, the two functions have different optimal

configurations. An intuitive fix for this conflict is to enable

foldConstants for one and disable foldConstants for the

other. Therefore, it is ideal to identify the suitable obfuscation

transformations for the rightful code regions.
2) Obfuscation Optimization with Partitioning: We address

this challenge by iteratively decomposing the program P and

find the optimal configuration for each partition. Specifically,

2https://github.com/jadejs/jade/blob/1.9.0/jade.js

Algorithm 2: Obfuscation Optimization with Partitioning.

Input : P is the input program.
T is the set of obfuscation transformations.
M is the language model trained as in §IV.
N is the number of iterations.
Npart is the number to partition P

Output : the obfuscated version produced by the optimal configuration.
1 Fobf ← ∅, Forig ← P
2 for p← 1 to Npart do
3 seq ← shuffle(T ), seq∗ ← seq , Ftest ← ∅

4 for i← 1 to N do
5 if p = Npart then
6 partition← Forig

7 else
8 partition← random_sample(Forig)

9 P ← (Fobf, partition, Forig \ partition)
10 seq ′ ← mutate(seq)

// rand() simulates the uniform distribution.
11 if rand() < A(seq → seq ′;P ′;M) then
12 seq ← seq ′
13 if Δ(P ′; seq;M) > Δ(P ′; seq∗;M) then
14 seq∗ ← seq , Ftest ← partition

15 Fobf ← Fobf ∪ seq∗(Ftest), Forig ← Forig \ Ftest

16 return Fobf

given a number Npart to partition P at the function level, we

call Algorithm 1 Npart times. One call produces a partition

(i.e., a set of functions) with its optimal configuration. The

subsequent call produces another partition, containing functions

that are not covered by the partitions produced in previous

calls.

Let the program P (i.e., a set of functions) be represented

as a triple (Fobf, Ftest, Forig), where Fobf is the set of functions

in P that is already optimally obfuscated, Ftest is the set of

functions that is being obfuscated, and Forig is the set that has

not been obfuscated. Given an obfuscation configuration seq ,
then the semantics of seq(P ) is refined as follows,

seq(P ) = seq(Fobf, Ftest, Forig) = Fobf ∪ seq(Ftest) ∪ Forig

which can take as input either a set of functions or a triple of

sets.

Algorithm 2 details the partitioning process with MCMC

search for optimal configurations. The general idea is that we

gradually obfuscate the program P in at most Npart steps, in

each of which a partition of P is obfuscated.

C. Runtime Performance Optimization

Generally, the automatic optimization is a tradeoff between

obscurity and execution performance. In order to balance the

tradeoff, we design several heuristics to reduce unnecessary

search/optimization.

First, we exclude small functions which have a very small

number of local variables and arguments, and functions whose

bodies mainly call APIs, because there is little improvement

room for obfuscation in such functions. Second, we dynamically

record how perplexity changes over optimization iterations. If

the change is tiny, we terminate further search to save time.
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function handleTemplateCache (options, str) {

var key = options.filename;

if (options.cache && exports.cache[key]) {

return exports.cache[key];

} else {

if (str === undefined)

str = fs.readFileSync(options.filename, ’utf8’);

var templ = exports.compile(str, options);

if (options.cache) exports.cache[key] = templ;

return templ;

}

}

function bracketExpression(skip){

skip = skip || 0;

var start = this.input[skip];

if (start != ’(’ && start != ’{’ && start != ’[’)

throw new Error(’unrecognized start character’);

var end = ({’(’: ’)’, ’{’: ’}’, ’[’: ’]’})[start];

var range = characterParser.parseMax(this.input, {start:

skip + 1});

if (this.input[range.end] !== end)

throw new Error(’start character ’ + start +

’ does not match end character ’ + this.input[range.end

]);

return range;

}

(a) Original Source Code

//JSNice: a->options,b->source,c->path,d->fn

function handleTemplateCache(a, b) {

var c = a.filename;

if (a.cache && exports.cache[c]) {

return exports.cache[c];

} else {

if (b === undefined) {

b = fs.readFileSync(a.filename, "utf8");

}

var d = exports.compile(b, a);

if (a.cache) { exports.cache[c] = d; }

return d; }

}

//JSNice: a->start,b->skip,c->range,d->end

function bracketExpression(b) {

b = b || 0;

var a = this.input[b];

if (a != "(" && a != "{" && a != "[") {

throw new Error("unrecognized start character"); }

var d = {"(":")", "{":"}", "[":"]"}[a],

c = characterParser.parseMax(this.input, {start:b + 1});

if (this.input[c.end] !== d) {

throw new Error("start character " + a +

" does not match end character " + this.input[c.end]); }

return c;

}

(b) foldConstants is disabled.

//JSNice: a->options,b->str,c->path,d->root

function handleTemplateCache(a, b) {

var c = a.filename;

if (a.cache && exports.cache[c]) {

return exports.cache[c];

}

void 0 === b && (b = fs.readFileSync(a.filename, "utf8"));

var d = exports.compile(b, a);

a.cache && (exports.cache[c] = d);

return d;

}

//JSNice: a->unclock,b->skip,c->range,d->cache

function bracketExpression(b) {

b = b || 0;

var a = this.input[b];

if ("(" != a && "{" != a && "[" != a) {

throw Error("unrecognized start character");

}

var d = {"(":")", "{":"}", "[":"]"}[a],

c = characterParser.parseMax(this.input, {start:b + 1});

if (this.input[c.end] !== d) {

throw Error("start character " + a +

" does not match end character " + this.input[c.end]);

}

return c;

}

(c) foldConstants is enabled

Fig. 5: A real-world example of conflicting functions

VI. IMPLEMENTATION AND EVALUATION

A. Instantiation for JavaScript

We instantiated the proposed framework for JavaScript

(JS) and developed the Closure� tool. The implemen-

tation includes 3,342 LOC NodeJS, 365 LOC Python

and 51 LOC Java. We made it publicly available at

https://bitbucket.org/njaliu/closure-star-tool.

B. Experimental Setup

All the experiments are performed on a Ubuntu 14.04 virtual

machine with dual Intel Core i5 processors, 10GB RAM and

128GB SSD. In evaluation, the obscurity LM is configured

to be 5-gram using KenLM [18]. The number of partitions

Npart = 2. As for the adversary to Closure�, we use the

UnuglifyJS front-end [19] and the Nice2Predict underlying

machine learning engine [20], which are both from JSNice [7].

We use 25 top active open source JavaScript projects from

GitHub. Most of the projects are selected from the most-

stars list. From the perspective of the adversary JSNice, the

experimental projects can be classified into two categories. We

use the term “normal” to refer to projects which are included

in the training data of JSNice, while “obfuscated” is used

for others. Inherently, JSNice should perform better attack on

“normal” input than “obfuscated” ones. We check how our

approach responds to attack on both types. One of the major

features of JSNice is to assign meaningful names to variables.

Therefore, after the MCMC search iteration, we apply JSNice

to attack the obfuscated file and quantify the obfuscation by

counting the number of variables which are correctly recovered.

We believe this makes sense for two reasons. First, the quality

of JSNice prediction is dependent on connecting the program to

its training corpus, which means that obscurity of the program

can be reflected by how variables names are predicted. Second,

people leverage much on names to understand code. More

variables are predicted with meaningful names, less difficult

the program is to be well understood.

Baseline Obfuscation. We selected Google Closure

Compiler as a contrast for Closure�. The main contribution of

this work is to optimize obfuscation (or transformations in

general) by searching for an effective configuration, which is

orthogonal to the underlying obfuscators. While featured as an

optimizer for JavaScript [9], such tools are characterized as a

form of obfuscators by JSNice [7] (They used UglifyJS, which

is similar to Closure). Moreover, Closure excels at limiting

the code size and runtime overhead, making it suitable for

real-world usage. We have conducted a preliminary study

to compare Closure with commercial obfuscators (available

at https://bitbucket.org/njaliu/closure-star-tool),

showing that Closure generates 56% smaller but equally

obfuscated code compared to commercial tools. Lastly, Closure

is open-sourced, enabling us to flexibly generate random

configurations.

C. Research Questions
In this paper, we present the insight of input-dependent

program obfuscation and its optimization can be modeled as

an optimization task to search for highest perplexity. We intend

to address the following research questions:
RQ 1. Can the obscurity language model capture the obscurity?
RQ 2. Can the MCMC random search optimize obfuscation?
RQ 3. Does the optimization give us practical benefits?

D. Results and Discussions
Now, we present the evaluation results and multi-dimensional

in-depth analysis as well. To begin with, we try to investigate

the quality of the obscurity language model, figuring out

whether the measurement perplexity is consistent with the

obscurity of programs. Towards this goal, we monitor the

obfuscation optimization process to record the intermediate

output at each iteration. Specifically, we rank those files on both

perplexity and obscurity (which is inversely proportional to the

number of correctly recovered variable names), and calculate

their rank distance. Given an input program and the number

of iterations N, the ranks on perplexity xi and obscurity yi
at iteration i (1 ≤ i ≤ N) satisfy that xi, yi ∈ [0,N− 1]. The
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rank distance Di is defined as Di = |xi − yi|. Accordingly,

Di ∈ [0,N− 1]. Overall, the monitoring leads to 3,417 records

with a distribution shown in Figure 6.

Fig. 6: Rank distance between perplexity and obscurity. There

are no iterations with rank distance larger than 6 observed

within the overall monitored records.

TABLE I: On the different order of the LM. ARD: Average

Rank Distance. COEF: the correlation coefficient.

n-gram ARD COEF
3 0.38 0.9596
4 0.37 0.9683
5 0.38 0.9743

The definition of rank distance delivers the message that

smaller distance indicates better consistency between perplexity
and obscurity, vise versa. In our setting, perplexity calculated

by the obscurity LM is used to identify the obfuscation

improvement and drive the optimization. That said, we rely

on the rank of perplexity rather than its absolute values. In

that sense, rank distance is sufficient for characterizing the

efficacy and sensitivity of the obscurity LM. As Figure 6 shows,

most iterations (close to 80%) generate a zero distance, which

means that perplexity is perfectly consistent with obscurity.

Furthermore, 1-distance and 2-distance cumulatively increase

the ratio to almost 100%. Larger distances (e.g., from 3 to 6),

which expose non-negligible inconsistency, rarely occur in the

records. From the global picture, Figure 6 gives us an intuitive

confidence that our LM is consistent. To be more precise, we

further calculate two support indicators in Table I: (1) the

average rank distance and (2) the correlation coefficient which

illustrates a quantitative measure of correlation and dependence

valued from −1 to 1. While both indicators describe the quality

of an obscurity LM, coefficient is of the most practical use

via mirroring the capability of the LM to locate a powerful

obfuscation. In the setting of Figure 6 which uses 5-gram, the

obscurity LM shows strong consistency in all the indicators.

The 0.9743 coefficient further confirms that perplexity and

obscurity are close to a total positive correlation. If we modify

the order of n-gram (n = 3, 4), the consistency decreases

slightly in terms of coefficient, which suggests that the 5-gram
LM fits our setting the best.

Based on the observation above, for RQ1 we believe that the

language model we built is quite capable of capturing obscurity

during the optimization. In another word, it is reasonable to

rely on it to guide the obfuscation process.

TABLE II: Obfuscation efficacy of Closure� compared to

Closure on normal and obfuscated projects. Total column

refers to the number of all variables considered (including

local variables and function arguments). Closure and Closure�

columns list the number of variables which are attacked

(correctly recovered) by JSNice, which means that smaller value

amounts to better obfuscation. Improve column calculates the

relative improvement of Closure� over Closure.

Project Total Closure Closure� Improve
Normal 1497 1211 891 26%
angular 248 205 171 17%
meteor 443 351 231 34%
react 134 86 68 21%

Obfuscated 791 218 171 22%

Greedy 1497 1211 1033 15%
Conflict 1497 1211 928 23%

Next, we compare the obfuscation between Closure� and

Closure SIMPLE mode (which is the default setting). The

detailed statistics is displayed in Figure 7 and Table II.

To be specific, 54 files with core functionalities from the

normal projects are selected as in left of Figure 7. Clearly,

Closure� outperforms Closure for the major portion of the

files. In terms of the rest, Closure� is able to achieve the

same obfuscation as Closure. The red arrow demonstrated

the maximal improvement, where the optimized obfuscation

protected 102 more variables (65%) from attack. Considering

all the normal projects, we calculated the relative improvement

over Closure in Table II. Under the attack of JSNice, Closure�

optimized the obfuscation of Closure by protecting 26%

more variables. We also listed results for top three popular

projects: angular [21], meteor [22] and react [23], which

have 20,000 GitHub stars on average. Likewise, Closure�

exhibits an average 24% optimization. Similarly, we carried

the experiments on obfuscated projects3. From right part of

Figure 7, we find that the maximal improvement involves 17

variables (29%). According to Table II, Closure� managed

to reduce the number of recovered variables from 28% (in

Closure) to 22%. Although the absolute improvement is not

as big as in normal projects, the relative improvement tends

to be close (22%). The achieved optimization can be seen

as effective transformations to confuse the attacking process,

making adversaries to infer in a wrong direction. In addition,

we run our sampling with greedy strategy and without conflict

removal (last two rows in Table II). The optimization decreases

to 15% and 23% respectively, which embodies the necessity of

our MCMC random search with conflicting function elimination.

We also conduct the Wilcoxon Signed-Rank Test [24] over

obfuscation results from Closure and Closure� to validate the

statistical significance. With the 1.783 z-score which does

not exceed the critical value 1.960 according to [25], the

optimization is statistically significant. In general, our findings

3obfuscated projects are those on which JSNice can only recover small
number of variables.
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Fig. 7: Obfuscation optimization on part of normal projects (Left) and obfuscated projects (Right). Arrow pointing down

means Closure� is better, up means Closure is better. The longer an arrow is, the greater the optimization is.

answer RQ2 in the affirmative, and also convince us that the

efficacy of Closure� is not limited in the training corpus of the

obscurity LM. On the other hand, the optimized obfuscation

transformations is not always the same configuration as Closure,

particularly some use fewer while some use more. This also

hints us that the assumption Adding a transformation is always
good may not hold.

Fig. 8: For attacks on Closure� and Closure, Left shows the

number of successful defence. For those failed defence, Right
summarizes how much extra delay Closure� and Closure can

incur.

In real-world applications, a major strength of obfuscation

is the incurred delay on possible malicious use. To further

exploit the practical benefits of the optimized obfuscation, we

investigate how much extra difficulty is added compared to

Closure in terms of manual attacks. We deliver 10 obfuscated

files (17-42 LOC, from Closure� or Closure) of meteor project

to 20 programmers (10 PhD and 10 master, both have at least

2-year JavaScript programming experience), asking them to

identify the core functionality related variables by assigning

given meaningful names. The accuracy and delay on the tasks

(which interpret the practical benefits) are summarized in

Figure 8.
Here, we count (1) how many attacks are successfully

defended using Closure� and Closure, respectively (2) how long

is the delay on effective attacks. Clearly, Closure� shows better

defense by blocking 5 more (20% for Closure) attacks in total.

With respect to other misses, Closure� is also able to increase

the attack delay by 30% on average. With the growth on file

size, this advantage can be amplified, disabling more potential

attacks. In sum, we believe Closure� offers complementary

power to defend practical attacks on obfuscation, which is

probably relied on human understanding and learning-based

tools as well. Therefore, we can reply to RQ3 with a positive

answer. In the future, intensive experiments are planned on

more professional attackers.

Fig. 9: Execute different numbers of iterations to evaluate the

achieved obfuscation improvement.

Furthermore, we analyzed how the number of iterations

affected obfuscation improvement. We randomly select 20 files

and employ different numbers of iterations for obfuscation. The

tuning process is shown in Figure 9. In principle, obfuscating

larger programs should be more difficult than small ones since

it is harder to locate a good obfuscation within bounded search.

Generally, the obfuscation improvement grows fast with the

increase on number of iterations when the total number is small

(N = 5,8,10). However, for large numbers (N = 20,25), the

observed improvement remains at a similar level. The trend

can be explained as: the obfuscation is optimized when the

obfuscator is able to locate suitable transformations. Commonly,

the effective configuration combines specific set of obfuscation

transformations. Thus, if the sampling is inefficient, there is

little possibility to hit a good solution. Conversely, if the

sampling already offers enough chances to the obfuscator,

increasing iterations displays little impact. Yet, there are also

cases which achieve a high improvement with a small number

of iterations. That is because those files match to a single

transformation to the most. In that case, even an inadequate

sampling can uncover the best. This observation opens the

possibility for Closure� to infer a good configuration of specific

files so as to enforce an efficient iteration.

E. Threats to Validity

Construct validity. This threat concerns the relation between

theory and experimental observations. In our case, we focus on
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optimizing the obfuscation to improve the obscurity. To measure

obscurity, we turn to calculate perplexity, count the number of

recovered variables and efforts cost in manual attack. The most

possible threat is that the measurement cannot truly capture

obscurity. As a response, we clarify that quantifying obscurity is

not our goal, instead we try to identify good obfuscations from

poor ones. From this point, our measurement is useful, which

is confirmed in the evaluation where the guided optimization

weakened the adversary and deterred practical attacks. On the

other side, we also agree on the significance of more advanced

connections between obscurity and program information, to

which the proposed framework can flexibly interface.

External validity. This threat focuses on to what degree

our approach can generalize to applications outside the scope

in this paper. There indeed exists the potential threat that the

proposed obfuscation framework may not adapt to most or all

types of programs, since our instantiation is for JavaScript and

experimented on open-source projects. However, the threat is

mitigated by the fact that (1) our framework is not language

dependent and can be instantiated in other language domains,

and (2) open-source projects share a considerable group of

common elements with other non-public ones. Thus, we believe

the found trend should be general.

VII. RELATED WORK

In this section, we discuss on the related works. To optimize

program obfuscation, we take a novel position to effectively

employing well-designed transformations. The key idea is

a combination of stochastic search techniques and language

model of source code.

Code Obfuscation. Program obfuscation has been ex-

tensively studied to make reverse engineering or human

understanding harder [26]. Theoretically, it is claimed that

no “perfect” obfuscation exists [27], [28]. Despite of the

impossibility, Barak suggested indistinguishability obfuscation
[27], [29]. Garg and Brakerski further presented obfuscators for

polynomial-size circuits [30], [31]. Barak described a simplified

variant to achieve protection against algebra attacks [32]. Sahai

proposed punctured programs for cryptographic problems [33].

Goldwasser proposed to identify the best possible obfuscation

which leaks as little information as other programs with

the same functionality [34]. Other works were advanced in

pursuit of better efficiency [4], [35]. For practical software

use, Collberg proposed the opaque predicate to obfuscate

the program by inserting boolean valued expressions whose

values are known to obfuscators but difficult to analyze for

automatic tools [1]. Sharif employed the conditional code
obfuscation at compilation phase to transform input dependent

branch conditions and encrypt the body [2]. Regarding program

slicing [36] as the adversary, Drape transformed code so that

the orphaned slices — code left after the slicing — are

minimized [37]. Differently, Linn presented a complement

to thwart disassembling process which translates machine

code to assembly code [6]. Considering semantics, researchers

viewed program analyses as adversaries and identify a set of

transformations to make the analyses as much imprecise as

possible. Regarding abstract interpretation [38], Giacobazzi

leveraged interpreter distortion to generate obfuscated code [5]

with the notion of incompleteness [39]. On the other side, Preda

investigated the concrete program semantics instead of abstract

semantics to guide the obfuscation process [3].
Compared to previous works, we focus on the emerging

learning-based adversaries. Moreover, we proposed to search

for effective obfuscation transformations for a given program,

which results in an input sensitive optimization.

Languagem Models of Source Code. Due to the fact that

software is repetitive and not unique [40], language models

can be built for source code to capture regularities. Based on

the classical n-gram model, Hindle exploited the naturalness
of software, which proved code to be predictable and led to

a programming suggestion engine [12]. Nguyen extended the

model with sememes to involve semantic information other than

lexemes [14]. Moreover, the localness is further enriched by Tu

via proposing a cache language model to absorb local constructs

for predicting programs [15]. In terms of method sequence,

Raychev built the language models on call sequences [13]. The

language model can synthesize method calls based on context

and fill program holes across various objects with arguments.

Towards the application of suggesting names, Allamanis [41]

and Raychev [7] addressed the naming for variables while

Allamanis handled methods and classes as well [8].
In our setting, we built an obscurity language model to

capture the remaining regularities of obfuscated programs. To

this end, we built the language model with obemes, which is

different from lexemes based techniques.

VIII. CONCLUSION

Verifiability. The replication package of Closure� is at

https://bitbucket.org/njaliu/closure-star-tool.

Conclusion. In this paper, we have proposed a novel

language model based obfuscation framework. Two key insights

behind the framework are: (1) We have built a language

model for obfuscated programs and validated that perplexity
helps capture obscurity, and (2) we employ stochastic search

like MCMC to effectively identify powerful obfuscation

configurations for diverse source programs. Generally, the

framework can be regarded as a dynamic, guided combination

of existing obfuscation techniques and techniques from the NLP

community. We have realized the framework as Closure� for

JavaScript programs. Evaluated on top active GitHub projects,

Closure� is shown to outperform state-of-the-art obfuscators

and support diverse programs. The achieved optimization can

help deter advanced practical attacks. We believe that the

presented framework highlights a new perspective on program

obfuscation and complements existing work.
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