
Toward Safe Interoperations in Network Connected Medical
Cyber-Physical Systems Using Open-Loop Safe Protocols

Andrew Y.-Z. Ou∗, Maryam Rahmaniheris∗, Yu Jiang†, Po-Liang Wu∗ and Lui Sha∗
∗University of Illinois at Urbana-Champaign, USA

†Tsinghua University, China

Abstract— Using wireless networks in medical Cyber-Physical
Systems could be challenging. Because the medical system not
only assists the medical personnel to deliver medical services to
the patient but also needs to deal with accidental situations such
as communication failures without compromising the patient’s
safety. Previous research work tackled the communication failure
problems in medical CPS from architecture perspectives. How-
ever, as medical devices configurations become more complex
when a medical CPS is composed of many medical devices,
we need to know that whether the certain configuration and
a combination of the devices will not compromise the patient’s
safety. We present an algorithm to tackle the problem that
whether a given system configuration exists a possible series of
system transitions that allows the physicians to perform medical
operations; in the mean time, the system transitions ensure the
patient’s safety while communication failures may happen during
the transitions.

I. INTRODUCTION

In a network connected medical cyber-physical system,

networks provide communication among medical devices. It

also allows the possibility of configuration and combinations

of medical devices for different medical procedures. However,

within the network environment, a medical CPS needs to deal

with the situation when the networks do not provide services

which will impact the safety and effectiveness of medical

procedures.

One of the most important issues when using wireless

networks for medical CPSs is that failures or glitches of the

communication networks should not lead to negative impacts

to the patient as well as the medical procedures. This problem

is known as the “open-loop” problem because the supervisory

control loop becomes open if the communication networks

fail. In another case, even if the communication networks

do not fail but suffer from a long and unexpected delay,

it may cause negative impacts to the system. For example,

in the widely used Medical Device Plug-and-Play (MD PnP)

framework [1], if the supervisor cannot query the state of

the devices due to communication loss, the supervisor will

not be able to decide the following actions for each device

without the state information of each device. For this case,

medical devices cannot further coordinate because of lacking

communications networks. Without further coordinations, the

system may violate the predefined safety constraints and hence

brings the patient to a dangerous situation. As a result, it

is required to handle the situation when the communications

network may fail without compromising the patient’s safety.

Kim et al. [2] and Tan et al. [3], [4] did the pioneering

work on open-loop safe problems from different perspectives.

Kim et al. propose a vector-based solution that the centralized

supervisor sends out a vector including a list of future actions

for the device. A device performs the actions specified in

the vector when communication fails. Tan et al. propose a

design pattern to tackle the open-loop safe problem and use

formal methods to prove that the proposed design pattern

is correct. A common assumption is that the system needs

to be formalized as suggested by the paper to deliver the

safety guarantee. However, it is not known that given a system

model whether the system may be communication failure

resistant or not. This is especially important because of the

increasing number of devices of generic medical scenarios and

the dynamic random failure mode of wireless communication

bringing new challenges to the open-loop safe problem. More

specially, the increasing number of medical devices will result

in more complex interlaced safety constraints and make it

even more difficult to determine whether the system can safely

operate under communication failures.

In this paper, we present algorithms for medical CPSs to

determine whether the system can guarantee safe system state

transitions in the presence of communication failures. First,

we analyze a medical system of tracheotomy and the safety

constraints for the patient. Based on the medical scenario, we

provide a formal representation of a medical system. With

the system models, we propose an algorithm to analyze the

system models to determine whether the system can safely

transit among system states and can handle the situation of

communication failures or suffering from a long delay. Further

more, if there exist multiple possible system transitions, we

propose an algorithm to select the path with the longest period

that allows medical personnel to perform medical operations.

For evaluation, we provide a case study with multiple de-

vices and a set of safety requirements to examine the proposed

path finding algorithm on the tracheotomy systems to find

the configuration of the system to operate safely. The results

show that the resulting system with the generated configuration

and predefined safety constraints is safe under communication

failures.

Overall, our major contributions in tackling the open-

loop safe problem in medical cyber-physical systems are to

determine whether a system could be open-loop safe, and,

if the system could be open-loop safe, what could be the

configuration of the system that allows medical personnel to

perform medical services.

The paper is structured as follows: We derive safety hazards

and fault model of the tracheotomy in Section II. The open-

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 957

Fig. 1: The architecture of an open-loop safe cyber-physical

medical system, where we integrate the Open-Loop Safe

Protocol into the legacy supervisory control architecture of

medical systems (e.g., OpenICE).

loop safe cyber-physical medical system is introduced and

formalized in Section III. The algorithms to determine the

system whether it is open-loop safe is presented in Section IV.

A case study of the algorithms for the extended tracheotomy

scenario and generic medical system setting is presented in

Section V. We present the related work in Section VI and

conclude the paper in Section VII.

II. MEDICAL CPS AND MEDICAL SCENARIOS

We present a motivation system architecture based on

MD PnP. Then, we present the Tracheotomy as a motivation

example that adapts MD PnP for the supervisory control

system, and its safety requirements and system fault models.

A. System Architecture

The motivated supervisory control architecture is similar to

the Open-source Integrated Clinical Environment (OpenICE)

[5]. Figure 1 depicts the architecture for the supervisory con-

trol systems. OpenICE is developed by the MD PnP program.

The main goal of OpenICE is to connect network nodes (e.g.,
medical devices, decision support system) of medical systems

in the medical environment.

As presented in Figure 1, we define two roles of devices in

an open-loop safe medical cyber-physical system (OLSSys-

tem), an Open-Loop Safe Supervisor (OLS-Supervisor) and

an Open-Loop Safe Client (OLS-Client). In an OLSSystem,

it only has one OLS-Supervisor exist and could have at least

one OLS-Client. The setting is similar to typical traditional

architecture such as OpenICE that consists of one supervisor

and multiple device adapters.

The OLS-Supervisor is designed to coordinate the medical

devices to deliver medical services. It is the center of the

control logic. The system designers can specify how the

system should transit between different system states in the

OLS-Supervisor. For example, the OLS-Supervisor in the

tracheotomy can regulate the oxygen supply to avoid the

patient suffering hypoxia.

On the other hand, an OLS-Client is an adapter that receives,

reads and executes the control commands from the OLS-

Supervisor through the communication networks. An OLS-

Client is a middle layer serves as an interface between the

OLS-Supervisor and a medical device. For example, if an

OLS-Clientreceives a command to resume the oxygen supply

from the OLS-Supervisor, the OLS-Client then performs the

designated actions to resupply oxygen in the ventilator. Here,

the goal is to minimize the functions in OLS-Client adapters

in order to decrease the state space and hence the complexity

in a distributed environment.

B. Airway Laser Tracheotomy

In the tracheotomy, a surgeon first needs to stop the oxygen

flow of the ventilator to the patient with a mask on, and supply

with plain air flow. Then, the surgeon operates a laser scalpel
to unblock the airway of the patient. During the surgery, there

are two safety requirements. First, the surgery should have no

fire accident. That is, the laser scalpel should only operate on

the patient when the ventilator is not supplying oxygen but

plain air. It implies that the ventilator should be configured to

stop the oxygen prior using laser scalpel. Second, the patient

should not suffer hypoxia because of the late oxygen resupply.

It implies that the oxygen should resupply in time to avoid

hypoxia, and the laser scalpel operations should finish before

the oxygen resupply or it will cause a surgical fire. Without

an integrated medical system for such medical scenarios to

coordinate multiple medical devices, the safety requirements

are only achieved on a best-effort basis.

In the tracheotomy, the medical system has a ventilator to

supply the oxygen or plain air, and a laser scalpel to emit laser.

A detailed model is illustrated in [6], [3]. In a simplified and

yet realistic model, both the ventilator and the laser scalpel can

be modeled as binary-valued devices. A binary-valued device

is a device with two statuses, and each status can transit to

the other status directly. For the laser scalpel, “no-operation,

0” represents it does not emit the laser and “in-operation, 1”

represents it emits the laser for operation. For the ventilator,

“in-operation, 1” represents it supplies oxygen mixed with air

and “no-operation, 0” represents it supplies plain air only.

III. SYSTEM MODELS

We introduce a system model for an open-loop safe system.

An open-loop safe system model is a three-tuple, 〈S, SC, P〉
where S is a set of system states and each system state is a

tuple of devices’ status. For example, for a medical system

with two binary-valued medical devices, S is a set of system

states s. Each system state s is a n-tuple of devices’ status

di.status where i is the i-th device in the system and status ∈
{0, 1} and n is the number of devices.

Each system state s has a type which could be either Open-
Loop Safe State (OLSState), Transient Safe State (TSState),

Operation State (OState), or UnSafe State (USState). A system

can stay at an OLSState permanently (in comparison to

transient) and safely. For example, a patient with a ventilator

supply oxygen is considered as an OLSState. A system staying

at TSState is said to be safe and only allowed in the state

for a certain period of time. Furthermore, a system staying at

OState has the same properties as a TSState. The difference

is that an OState is also the destination state of a series

of state transitions to let medical personnel perform medical

958

operations. Last, a system entering or staying at an USState is

unsafe which the system shall avoid entering the state in any

condition.

The second element in the system model is a set of

safety constraints, SC. Each sci in SC is a two-tuple,

〈state, period〉, that allows a system staying at the given state

safely for the specified period of time. On the other hand, for

a sc, if the specified period of time is zero, it means that the

system is not safe in the given state.

The third element in the system model is a set of open-loop

safe paths, P . For each open-loop safe path p ∈ P , p has a

source state, a destination state and a series intermediate states

between the source and the destination state. The source state

of p is an OLSState and the destination state is an OState.

After the system reaches the destination state, the system will

reside in the OState safely for a period of time which allows

medical operations, then the system follows the reverse path

and transits to the original source state. The intermediate states

on a path are a series of TSState. Furthermore, a path should

not have any USState. Here, we assume that, in an unit of time,

the system should only transit to another state with distance

one.

Any state transition between two immediate states should

have state distance one. For example, in a two-binary-valued-

devices system, a transition from a state (0, 1) to (1, 1) has

the state distance one and it takes one unit of time to transit.

Because it only requires the first device in the tuple to change

the status from zero to one and the status of the second device

remains unchanged. Furthermore, a transition from a state

(0, 1) to (1, 0) has the state distance two and it takes two unit

of time. Because it requires each device to change its own

status and each change of status requires one unit of time.

IV. FINDING AN OPEN-LOOP SAFE SYSTEM

In this section, we first present an algorithm to examine

whether a given system model is open-loop safe and find out

possible open-loop safe paths in a given set of system states

and safety constraints. After finding out possible open-loop

safe paths, if there are multiple open-loop safe paths in the

system, we present an algorithm to select an open-loop safe

path with the maximum period that a system can stay in the

operation state to perform the designated medical task.

A. Determining an open-loop safe system

The first question to ask is whether exist one or more open-

loop safe paths in a given medical system model. Because

an open-loop safe path is a fundamental component that

can ensure that the system remains open-loop safe while

transitioning between states in the presence of communication

failures. As such, by following an open-loop safe path, it

guarantees that the system transitions meet its own safety

constraints.

Figure 2 presents the work-flow toward developing an open-

loop safe system. The work-flow includes two phases. First,

with the system parameters listed in Figure 2, the phase I is

to decide the existence of open-loop safe paths given a system

Fig. 2: Workflow for open-loop safe system developments

model, safety constraints and the objection state. If there exists

at least one open-loop safe path, then we move to the the

phase II. The phase II is to find out the path that can allow a

system to stay for the longest period at an operation state to

perform the medical task. With the configurations for medical

devices generated in phase II, a developer then configures the

devices to transit safely and against communication failures.

Here, we focus on the phase I of the work-flow. We will return

to introduce the second phase in Section IV-B.

In the phase I, the first step is to construct an undirected

weighted graph based on the given system states and safety

constraints. With the graph, next, we use the shortest path

algorithm to find out the shortest path and compare the length

of the path with the state distance between the source and the

destination state.

Constructing a System Graph Algotihm 1 presents the

phase I. We first construct a graph based on the given system

states and safety constraints in L:4 (Line 4 in Algorithm 1)

with the given system model. A system graph G is a graph

representation of a system that incorporates with system states,

system state types, and safety constraints as defined in Sec-

tion III. We name the graph, system graph G = (V,E), where

V is a set of system states in the given system model M and

represents a set of vertexes in G, and E is a set of weighted and

undirected edges in G. Each vertex v ∈ V in the system graph

G represents a relative system state in a given system model

M . After labeling each vertex with the corresponding system

state, we connect the two adjacent vertexes that have state

distance one. As a result, for every v ∈ V in G, each vertex

only connects to its adjacent vertex(es) with state distance one.

Next, we set up the state type of each vertex according its

system state in L:5.

959

To assign an integer weight of an edge, we label the weight

of each edge eij ∈ E based on the state type of the two

connecting vertexes vi, vj ∈ V and the safety constraints in

L:6. The intuition of labeling edges with different weight is

that we will use this weighted graph as the input for the

shortest path algorithm later. For each edge e, we assign the

weight of the edge e as either one or infinite.

More specifically, for each vertex v labeled with USState,

we label the weight of each edge connecting to the vertex v
with infinite weight. For any other edges in the graph, we label

the weight of the edge with one. Since only unsafe transitions

to or from a vertex v labeled with USState have infinite weight,

the weighted shortest path algorithm avoids selecting these

edges. To this end, we finish constructing a system graph of

a given system. We are ready to use this system graph as

an input for the weighted shortest path algorithm to find out

open-loop safe paths.

Finding Open-Loop Safe Paths With the generated system

graph, we use the weighted shortest path algorithm to find out

the shortest path from the source state, i.e., an open-loop safe

state, to the destination vertex, i.e., an operation state. This step

is presented in L:7 in Algorithm 1. Since we have labeled all

the edges connected to each unsafe state vertex with infinite

weight, and all other edges with weight one, when the shortest

path algorithm selects an edge, it attempts to select the edge

with weight one which avoid selecting the edges connected to

the unsafe state vertexes.

After the algorithm finds out the shortest path, we then

compare the summation of weights along the path with the

state distance between the source and the destination state in

L:8. Here, we assume the algorithm finds only one shortest

path in a given system graph. Since the weight of each edge

is not unique, so there could be multiple paths with the same

weight. We will discuss the case if there are multiple paths in

a system shortly. On the other hand, if the total weight of the

found path is larger than the state distance between the two

states, then it means the algorithm selects more edges than

necessary to transit form the source state to the destination

state. Therefore, we can conclude that there does not exist an

open-loop safe path in the given system model.

Furthermore, the total weight of the found path will never be

smaller than the state distance between the two states. Because

the state distance between the two states is a minimum

number of required state change. So, with the given graph,

the minimum weight of a path for a source state to reach the

destination state is as the same as the state distance between

the two states.

Finally, if the weight of the found path has the same state

distance between the two states, then it means the algorithm

selects the shortest path between the source and the destination

states. We can proceed to the next step to find out the period

of time for each device to stay at the certain status.

As mentioned earlier, the algorithm may find out more than

one path with the same weight between the source and the

destination states. For example, when the algorithm selects one

of two outgoing edges of a vertex. If there are two outgoing

ALGORITHM 1: Determine if a system has an open-loop safe
path

1 Input: States S and safety constraints SC of the system model
M ;

2 Output: List of possible system transition paths;
3 begin
4 System graph G = (V,E) ←

setSystemGraphVertex(M.states);
5 G ← G.setVertexType(M.states.types);
6 G ← G.setEdgeWeight();
7 M.paths ← G.getShortestPath(M.safetyConstraints);
8 M.paths ←

removePathWithWeightLargerThanStateDistance
(sourceState, destinationState, M.paths);

9 if Size of M.paths equals zero then
10 return No path found;

11 else
12 return M.paths;

edges have weight equal one, then the algorithm might select

either one of them. In this case, we need to determine which

one of the found paths may have the longest period to stay

at the operation state which allows more time for medical

personnel to perform medical tasks. In the next section, we

will introduce the algorithm to select the path of interest.

B. Finding the Optimum Open-Loop Safe Path

With the definition of transient safe in Section III, we can

now define a transient safe period (TSP) is a period of time

that a device can stay at the certain status so that the whole

system remains temporarily safe. A TSP for a device can be

configured as a timer by an OLS-Client adapter so that the

adapter on the medical device can change the device’s status

when the timer starts and resume the device’s status after the

timer with TSP configured expires.

We start from calculating the TSP configurations for the

ventilator and the laser scale in the tracheotomy as an moti-

vation example. After that, we will generalize the algorithm

for period configurations for multiple devices. With the found

path from Algorithm 1, we can find the TSP on each device

according to the specified safety constraints. If there are

multiple paths, after finding out the period of each timer on

one path, we then sort the paths in non-increasing order of

the period that the system can stay in an operation state. We

choose the path with the longest period that the system can

stay in an operation state.

Figure 3 presents the found path transitioning from an

OLSState through a TSState to an OState and rolling back to

the same OLSState. The ventilator is the first device to change

its status. Assuming the safety constraint on ventilator suggests

the safe period of pausing oxygen supply is pvent.off.max.

The safe period for the ventilator pausing oxygen supply is

dvent.off.timer = dvent.off.max. The ventilator remains off

(i.e., 0) from tv to tv′ and change its status to on (i.e., 1) at

tv′ .

The laser scalpel is the second device to change its status,

and we need to configure the timer for the laser scalpel such

960

Fig. 3: Time progression of system state transitions for the

extended Tracheotomy scenario

that it does not violate the safety constraint causing surgical

fire. Assume each state transition takes the maximum duration

dtran and the system resides in a TSState for the maximum

duration dresd. From Figure 3, we derive the safe duration to

avoid hypoxia is below.

2 · 2dtran + 2 · dresd + dops ≤ dvent.off.max (1)

And we can derive the maximum safe period dops for the

laser scalpel operation

dops ≤ dvent.off.max − 2(2ḋtran + dresd) (2)

As such, the TPS for the laser scalpel operations is

dlaser.on.timer = dops + 2dtran (3)

= dvent.off.max − 2(dtran + dresd) (4)

The timer for the laser starts at the time tl and fires at tl′ .
And since dvent.off.timer = dvent.off.max, we can further

derive dvent.off.timer as:

dlaser.on.timer = dvent.off.timer − 2(dtran + dresd) (5)

In the above mentioned example, the duration of the laser

timer dlaser.on.timer is limited by the duration of ventilator

dvent.off.timer to resume the oxygen. We further extend

this example to add another safety constraint that limits the

continuously operation time of the laser scalpel to protect the

medical device. The maximum duration for the laser scalpel

to operation is given as dlaser.on.max. As such, the duration

for the laser timer in Equation 5 is as follows.

dlaser.on.timer = min(dvent.off.timer − 2 · 2dtran − 2 · dresd,
dlaser.on.max)

(6)

Specifically, we present the algorithm of finding the TPS

for each device in Algorithm 2. The idea is that we gradually

shrink the timer duration of each device along a path. If

a device also has a safety constraint specifying the limited

period of time staying in the certain status, then we take it

into account when calculating the TSP for the device. First,

after running Algorithm 1 mentioned above, we retrieve path-

Candidates from the system model M in L:4 in Algorithm 2.

For each path in the pathCandidates, the algorithm extracts the

devices that need to change its status. As mentioned earlier, in

each unit of time, there is only one device changes its status.

ALGORITHM 2: Finding the path with longest duration in the
operation state

1 Input: A system model
M = 〈States, SafetyConstraints(SC), Paths〉 with the
paths generated from Algorithm 1

2 Output: An open-loop safe path
3 begin
4 pathCandidates ← M.Paths;
5 constant dtran, dresd duration for transitioning and

residing;
6 for each path p in pathCandidates do
7 deviceList ← getDevicesToBeConfigured(p);
8 for each device mi in deviceList do
9 /* Shrink the timer duration from the previous

device */
10 if mi has safe operation time constraint in M.SC

OR
11 mi−1 has the timer configured then
12 timer duration dmi ← min(

dmi−1 − 2(dtran + dresd), maximum safe
duration on mi specified in M.SC);

13 mi.setTimer(dmi);

14 else
15 mark mi as unhandled;

16 i++; /* Move to the next device */

17 /* Reversely expand the timer duration from the next
device, starting from mi where it is immediate
preceding to the first device has timer configured */

18 for each device mi marked as unhandled in deviceList
do

19 dmi ← dmi+1 + 2(dtran + dresd);
20 mi.setTimer(dmi);
21 i−−; /* Move to the previous device */

22 dops ← dlastDeviceWithTimerConfigured − 2dtran ;
23 p.add(dops) ;

24 sortPathsByDurationInOperationState(pathCandidates);
25 return the path with largest dops;

So, for each path in the pathCandidates, we can retrieve an

ordered list of devices where each device will change it status

sequentially as in L:7.

We present the TPS configurations from L:8 to L:23 in

Algorithm 2. First, if a device has a safety constraint specified

in the system model or the preceding device has the timer

configured, then we calculate the TSP for the current device.

Otherwise, we mark the device as unhandled and will handle

it later in L:18. For the current device, set the TSP of the

device to the minimum of the safe period to stay at its current

status from the safety constraint, or the timer duration from

the previous device, dmi−1, minus the two transitioning time

and residing time, 2(dtran + dresd). To see that why we need

to subtract the the two transitioning time and residing time,

Figure 3 gives the visual illustration. Each system transition

to a state takes one transitioning time (dtran) and one residing

time (dresd) at the other state. For example, the timer duration

for the laser scalpel is dtl,t′l = dtv,t′v −2(dtran+dresd) which

shortens the timer duration for the ventilator by 2(dtran +
dresd).

961

To handle the device(s) that hasn’t had timer configuration

yet, we handle it in L:18. Now, assume the first i devices in the

deviceList do not have its TSP calculated. We then calculate

the TSP for the i-th to the first device in the deviceList. Similar

to the timing duration shrinking in L:11, we now need to

expand the TSP from the i+1-th device for the i-th device to

accommodate the two times state transition and residing time.

Hence, the timer duration dmi equals the timer configuration

for the next device dmi+1 plus the two times dtran + dresd
in L:18. Then, we calculate the TSP of the i-1-th device until

finish calculating the TSP of the first device in the deviceList.

After calculating TSP for every device on the path, we then

calculate the duration for safely performing medical operation

dops by subtracting the two transition time from the TSP of the

last device as described in L:22. Finally, we sort the path with

non-increasing order of the medical operation time dops in

every path and return the path with longest medical operation

time.

V. CASE STUDY

We further extend the tracheotomy example. We add an-

other device model to represent the ventilator supplying plain

air. The new device state model s ∈ S is a three tuple

(doxygen, dplainAir, dlaser), where the first element in the tuple

represents that oxygen is supplying when the value is one

and pausing the oxygen when the value is zero. The second

element in the tuple is the status of plain air supply where the

value one represents the device is providing plain air otherwise

the value is zero. The third element in the tuple is the status

of laser scalpel which has the same notion as before.

With the two original requirements of no hypoxia and

no surgical fire, we add additional two safety requirements.

The first requirement is the laser scalpel can only operate

safely continuously within a period of time. The second new

requirement is that once the oxygen supply is paused, it is

required to enable the plain air supply.

We list the new system states in Table I. In the new system

states, both USStates and TSStates increase from one on each

to three states on each. With the system states and the safety

requirements, we then construct the system graph in Figure 4

and label the weight of each edges based on the connecting

system states at two ends according to Algorithm 1.

Next, with the system graph, we can use the path finding

algorithm in Algorithm 1 and TSP calculations described in

Algorithm 2 to select a path with the longest time staying in

the OState. Figure 5 presents the two open-loop safe paths with

the transient safe period staying in each system state. There

are two potential paths from the source OLSState (1, 0, 0) to

the destination OState(0, 1, 1). Each path has the same weight

of three. The weight equals the distance between the OLSState

(1, 0, 0) and the destination OState(0, 1, 1). The first path is

P1 = (1, 0, 0) → (0, 0, 0) → (0, 1, 0) → (0, 1, 1) where the

oxygen is paused and then the plain air is supplying as shown

in the top time-line in Figure 5. The second path is P2 =
(1, 0, 0) → (1, 1, 0) → (0, 1, 0) → (0, 1, 1) where the oxygen

supply is paused after the oxygen supply is enabled as shown

TABLE I: System states with types for the extended Tra-

cheotomy scenario

State Types System states (doxygen, dplainAir, dlaser)
OLSState (1,0,0)
USState (1,1,1), (1,0,1), (1,1,0)
OState (0,1,1)
TSState (0,0,1), (0,1,0), (0,0,0)

Fig. 4: System graph (Undirected Acyclic Graph) with weight

edges, system states, and system types for the extended

Tracheotomy scenario.

Fig. 5: The two open-loop safe paths. The top time-line is for

the first path (P1) and the bottom one is P2

in the bottom time-line in Figure 5. As shown in Figure 5, P2

has larger dops than P1 by saving two transition time dtran
and two residing time dresd. Because, in P1, the oxygen is

paused after the plain air is enabled such that it allows more

time for the system to transit to and stay at the OState to

perform surgeries.
VI. RELATED WORK

Close-loop control systems [7], [8], [9], [10], [11], [12]

for medical use while ensuring safety properties such as

glucose control systems for diabetes management and patient-

controlled analgesia (PCA) infusion have been well studied

based on formal verfication tehniques [13], [14], [15], [16].

The work [12] presents a model-driven approach for building a

close-loop cyber-physical medical system while guarantees the

safety properties. In the paper [12], Pajic et al.also discusses

the fail safe design for dealing with an open-loop safe problem

in PCA when the supervisor does not receive the expected

value for HR or SpO2. However, it is not clear how the

proposed method can be adapted to a system with more than

one network-connected medical device to coordinate the task

and has failsafe design against communication failures.

With the increasing interest of adapting communication net-

works in medical systems, researchers pay noticeable efforts

to address the open-loop safe problem caused by communi-

cation failures [17], [2], [18], [19], [20], [21] with enhanced

962

system architecture. For example, the papers [2], [18] propose

an architecture named Network-Aware Supervisory System

(NASS) based on the OpenICE architecture to safely integrate

networked medical devices. The key idea is to keep a copy

of execution sequences in each device called a vector; the

vector contains a plan of the following actions performed on

the device for future cycles in the case of a network failure

of packet losses. However, it is not clear how to generalize

the framework to a scenario with multiple devices and safety

constraints.

Our work focuses on providing a series of open-loop safe

system transitions as a foundation to generalize an open-

loop safe supervisory system with multiple medical devices,

and incorporate safety requirements of interactions between

devices. Furthermore, our proposed algorithms aim to select

a system transition path that can allow the medical personnel

with the longest operation time for performing surgeries.

VII. DISCUSSION AND CONCLUSION

We present a work-flow toward building an open-loop safe

system in medical CPSs. Specifically, we provide an algorithm

to determine whether a given system-of-interest model could

be open-loop safe in the presence of communication failures

and an algorithm to find a state transition path that has the

longest duration staying at the operation state for medical

personnel to perform medical operations.

In this paper, we do not address the question about the

communication protocol between the supervisor and medical

devices. With the open-loop safe paths generated by the

proposed algorithms in this paper, we are able to design an

open-loop safe protocol that based on the system transition

paths for networked connected medical devices to coordinate

for the medical tasks. Currently, our assumption of system

state is solely based on devices’ statuses. In some medical

cases, the system model could vary because of the situation

changes of the patient. This research challenge should be

addressed in the future work.

ACKNOWLEDGMENT

This work is supported in part by NSF CNS 1329886, by

NSF CNS 1545002 and in part by ONR N00014-14-1-0717.

REFERENCES

[1] J. Goldman, J. Jackson, S. Whitehead, T. Rausch, and S. Weininger, “The
medical device “plug-and-play” (md pnp) interoperability program,”
COMPUTER, vol. 39, no. 4, pp. 30–31, 2006.

[2] C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T. F. Abdelzaher,
“A framework for the safe interoperability of medical devices in the
presence of network failures,” in Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems. ACM, 2010, pp.
149–158.

[3] F. Tan, Y. Wang, Q. Wang, L. Bu, R. Zheng, and N. Suri, “Guaranteeing
proper-temporal-embedding safety rules in wireless cps: A hybrid formal
modeling approach,” in Dependable Systems and Networks (DSN), 2013
43rd Annual IEEE/IFIP International Conference on. IEEE, 2013, pp.
1–12.

[4] F. Tan, Y. Wang, Q. Wang, L. Bu, and N. Suri, “A lease based
hybrid design pattern for proper-temporal-embedding of wireless cps
interlocking,” Parallel and Distributed Systems, IEEE Transactions on,
vol. PP, no. 99, pp. 1–1, 2014.

[5] J. Plourde, D. Arney, and J. M. Goldman, “Openice: An open, interop-
erable platform for medical cyber-physical systems,” in Cyber-Physical
Systems (ICCPS), 2014 ACM/IEEE International Conference on. IEEE,
2014, pp. 221–221.

[6] T. Li, F. Tan, Q. Wang, L. Bu, J.-n. Cao, and X. Liu, “From offline
toward real-time: A hybrid systems model checking and cps co-design
approach for medical device plug-and-play (mdpnp),” in Cyber-Physical
Systems (ICCPS), 2012 IEEE/ACM Third International Conference on.
IEEE, 2012, pp. 13–22.

[7] D. Bruttomesso, A. Farret, S. Costa, M. C. Marescotti, M. Vettore,
A. Avogaro, A. Tiengo, C. Dalla Man, J. Place, A. Facchinetti et al.,
“Closed-loop artificial pancreas using subcutaneous glucose sensing and
insulin delivery and a model predictive control algorithm: preliminary
studies in padova and montpellier,” Journal of diabetes science and
technology, vol. 3, no. 5, pp. 1014–1021, 2009.

[8] E. Cengiz, K. L. Swan, W. V. Tamborlane, G. M. Steil, A. T. Steffen,
and S. A. Weinzimer, “Is an automatic pump suspension feature safe for
children with type 1 diabetes? an exploratory analysis with a closed-loop
system,” Diabetes Technology & Therapeutics, vol. 11, no. 4, pp. 207–
210, 2009.

[9] R. Hovorka, “Continuous glucose monitoring and closed-loop systems,”
Diabetic medicine, vol. 23, no. 1, pp. 1–12, 2006.

[10] M. J. O’grady, A. J. Retterath, D. B. Keenan, N. Kurtz, M. Cantwell,
G. Spital, M. N. Kremliovsky, A. Roy, E. A. Davis, T. W. Jones et al.,
“The use of an automated, portable glucose control system for overnight
glucose control in adolescents and young adults with type 1 diabetes,”
Diabetes Care, vol. 35, no. 11, pp. 2182–2187, 2012.

[11] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and
O. Sokolsky, “Toward patient safety in closed-loop medical device
systems,” in Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems. ACM, 2010, pp. 139–148.

[12] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and
I. Lee, “Model-driven safety analysis of closed-loop medical systems,”
Industrial Informatics, IEEE Transactions on, vol. 10, no. 1, pp. 3–16,
2014.

[13] Y. Jiang, Y. Yang, H. Liu, H. Kong, M. Gu, J. Sun, and L. Sha, “From
stateflow simulation to verified implementation: A verification approach
and a real-time train controller design,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2016 IEEE. IEEE,
2016, pp. 1–11.

[14] Y. Jiang, H. Zhang, Z. Li, Y. Deng, X. Song, M. Gu, and J. Sun,
“Design and optimization of multiclocked embedded systems using
formal techniques,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 2, pp. 1270–1278, 2015.

[15] Y. Yang, Y. Jiang, M. Gu, and J. Sun, “Verifying simulink stateflow
model: timed automata approach,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 852–857.

[16] Y. Jiang, H. Liu, H. Song, H. Kong, M. Gu, J. Sun, and L. Sha,
“Safety-assured formal model-driven design of the multifunction vehi-
cle bus controller,” in FM 2016: Formal Methods: 21st International
Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings 21.
Springer, 2016, pp. 757–763.

[17] W. Kang, L. Sha, R. B. Berlin, and J. M. Goldman, “The design of safe
networked supervisory medical systems using organ-centric hierarchical
control architecture,” 2014.

[18] C. Kim, M. Sun, M. Rahmaniheris, and L. Sha, “How to reliably
integrate medical devices over wireless,” in Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2012 9th Annual IEEE
Communications Society Conference on. IEEE, 2012, pp. 85–87.

[19] A. Y.-Z. Ou, Y. Jiang, P.-L. Wu, L. Sha, and R. B. Berlin, “Preventable
medical errors driven modeling of medical best practice guidance
systems,” Journal of Medical Systems, vol. 41, no. 1, p. 9, 2017.

[20] Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha, “Data-centered
runtime verification of wireless medical cyber-physical system,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1900–1909,
2017.

[21] Y. Jiang, H. Liu, H. Kong, R. Wang, M. Hosseini, J. Sun, and
L. Sha, “Use runtime verification to improve the quality of medical care
practice,” in Software Engineering Companion (ICSE-C), IEEE/ACM
International Conference on. IEEE, 2016, pp. 112–121.

963

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

