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Abstract—As a problem-solving method, neural networks have
shown broad success for medical applications, speech recognition,
and natural language processing. Current hardware implemen-
tations of neural networks exhibit high energy consumption due
to the intensive computing workloads. This paper proposes a
methodology to design an energy-efficient neural network that
effectively exploits computation reuse opportunities. To do so,
we use Bloom filters (BFs) by tightly integrating them with com-
putation units. BFs store and recall frequently occurring input
patterns to reuse computations. We expand the opportunities for
computation reuse by storing frequent input patterns specific
to a given layer and using approximate pattern matching with
hashing for limited data precision. This reconfigurable matching
is key to achieving a “controllable approximation” for neural
networks. To lower the energy consumption of BFs, we also use
low-pow memristor arrays to implement BFs. Our experimental
results show that for convolutional neural networks, the BFs
enable 47.5% energy saving of multiplication operations, while
incurring only 1% accuracy drop. While the actual savings will
vary depending upon the extent of approximation and reuse, this
paper presents a method for reducing computing workloads and
improving energy efficiency.

I. INTRODUCTION

Recent advances in neural networks have achieved impres-

sive performance on various application domains such as med-

ical diagnostics [22], image classification [17], speech recogni-

tion [13], and natural language processing [6]. The continued

success of neural networks has led to their implementation on a

variety of hardware platforms [5][12][4]. Energy consumption

is an important metric for their implementation in increasingly

broad range of computing platforms. Arithmetic operations

and memory accesses constitute a significant source of energy

consumption. We focus here on reducing the computational

workloads in neural networks.

In recent literature, computational workloads have been

addressed by using approximations in computations thus cre-

ating a tradeoff between accuracy and energy [9][19]. The

approximations can be made both in hardware or in software.

For instance, approximate computation units have been shown

to have better energy efficiency than the exact ones [16].

Neural network computations are dominated by additions and

multiplications. Due to their cost and latency, multiplications

have been a natural target for optimization in hardware. For

instance, in [9], the authors substitute the normal multipliers

with inexact multipliers that provide inexact logic but with

less hardware cost. Mrazek et al. further optimize approx-

imate multiplier design with a uniform structure suitable

for hardware implementation [19]. While the adaptability

of neural networks in its applications is naturally suited to

use approximation, in practice it also requires retraining the

network to mitigate accuracy loss caused by logic errors from

inexact design. Moreover, once the design has been physically

implemented in hardware, it is not possible to reconfigure the

design to control the approximation level entirely in hardware.

To overcome above-mentioned limitations, we propose us-

ing a reconfigurable and controllable approximation technique

in neural networks by exploiting the computation reuse op-

portunities. Computation reuse has been adopted in various

applications where value locality and similarity are observed

[20]. To enable computation reuse, we rely on tight integration

of Bloom filters (BFs) with the computation units in hardware,

a data structure that supports approximate set membership

queries with a tunable rate of errors to store frequent compu-

tation patterns and return the results without actual execution

of energy-intensive float point units (FPUs).

To ensure effectiveness of computation reuse using Bloom

Filters, we use a set of techniques. First, we perform approx-

imate pattern matching instead of exact pattern matching in

neural networks. This is done in the context of arithmetic op-

erations on floating point numbers. We thus explore matching

operations under limited precision of operands. This is done

via a reconfigurable BF architecture that can do approximate

pattern matching with hashing for data items that feature

varying bit width. Second, we perform layer-based pattern

matching instead of global pattern matching. That is, we

detect and store different set of input patterns for each layer

separately. The reason is that in neural networks, each layer

has its own set of functions thus may experience different

input workloads. Accordingly, we configure BFs for each

layer separately. Third, we implement the BFs with resistive

memory elements to provide energy efficient storage for saving

the frequently used patterns [2].

Based on our implementation and evaluation, this paper

makes the following contributions:

• We explore and use computation reuse opportunities

in neural networks and enhance them with layer-based

approximate pattern matching.

• We design a reconfigurable Bloom filter unit that can

perform approximate pattern matching, increasing the
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Fig. 1. The computation processes of an artificial neuron.

computation reuse opportunities while leading to a con-

trollable approximation level for neural networks.

• We demonstrate the effectiveness of the approximate BFs

by reducing 47.5% energy consumption of multiplication

operations in 45nm technology while incurring only 1%

accuracy degradation.

II. NEURAL NETWORKS

Modeled after biological neuronal processing, neural net-

works are a family of problem-solving methods in machine

learning. A neural network is structured as consisting of an

input layer, several hidden layers, and one output layer. All

layers except the input layer are composed of artificial neurons

that perform the basic computations as illustrated in Fig. 1.

A. Neuron Processing

As illustrated in Fig. 1, a typical neuron performs a linear

processing part followed by a non-linear processing part. In the

linear processing part, inputs are multiplied with correspond-

ing weights, and then all products are accumulated. In the non-

linear processing part, an activation function is applied to the

weighted sum. Common activation functions include logistic

sigmoid, hyperbolic tangent, or rectilinear unit, whose purpose

is to enable a neural network to be a universal function approx-

imator [11]. The activation function is usually implemented by

a lookup table in hardware [9]. Finally, the output yk of neuron

k is computed as yk = δ(
∑n

j=1
xjwjk − θ), where xj is the

jth input, wjk is the synaptic weight connecting jth input

and neuron k, θ is the bias, and δ is the activation function.

Among the computations in neurons, multiplications are the

most energy-consuming part. Thus, we focus on reducing the

energy consumption of multiplication in this paper.

B. CNN Architecture

Among different types of neural networks, two of them

are most widely used: multi-layer perceptron (MLP) and

convolutional neural network (CNN). As one of the simplest

neural network model, MLP has one input layer, one output

layer, and several hidden layers, where each neuron is directly

connected to the outputs of the previous layer. Recently, CNNs

have grown in popularity in various applications such as

image/video recognition due to its better performance. A CNN

applies convolution operations to a restricted part of the input

data for each neuron in the convolutional layer. A typical CNN
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Fig. 2. An illustration of a convolutional neural network.

consists of an input and an output layer, as well as multiple

hidden layers. The hidden layers can be either convolutional,

pooling or fully connected. Fig. 2 depicts a typical CNN

architecture that consists of six layers, where the first, third,

and fifth layer are convolutional, while the second, fourth

are pooling layers, and the sixth layer is a fully connected

layer. Consisting of a set of learnable filters, the convolutional

layer is the core building block of a CNN. It performs the

convolution operations on each filter and a portion of input

volume, where a large number of multiplication operations

are used, generating a new output image, namely a feature

map. Then the pooling layer is used to reduce the size of a

feature map by averaging various pixel strengths. This process

only preserves the most informational features of input by

dropping the unnecessary minor information. We integrate BFs

in convolutional and fully connected layers, which account for

98% of multiplications in our experimented neural network

[19].

III. PROPOSED METHODOLOGY

In this section, we explore the computation reuse opportu-

nities in neural networks that can avoid the energy overhead

due to re-execution, and propose optimization techniques that

improve the reuse opportunities. Based on this, we propose

a novel architecture that can enable flexible control over

computation reuse.

A. Layer-based Pattern Matching

To maximize the energy savings, we need to maximize

the computation reuse opportunities. Since we need to store

a set of pre-calculated computations, we aim to store most

frequent input patterns to maximize the computation reuse

opportunities. To do this, we use several steps. First, we profile

the input operands of multiplications using some training

input. Second, in the profiled input, we look for the most

frequent input patterns and calculate their results.

In this process, we use two strategies to look for the most

frequent input patterns: global-based and layer-based. Global-

based means we look for the most frequent input patterns from

all the multiplication operations in neural network inferences,

regardless of their locations. Layer-based means we look for

the frequent input patterns for each layer separately. That is,

for each layer, we find the most frequent patterns from the

input operands of multiplications profiled from that specific

layer. For example, to find the most frequent patterns for

the third convolutional layer, we profile all input operands of

1224 Design, Automation And Test in Europe (DATE 2018)



10 20 30 40 50
Number of stored patterns for each layer

0

5

10

15

20

H
it
ra
te

(%
)

global-based

layer-based

Fig. 3. The hit rate of exact pattern matching.

multiplications in that layer and find the most frequent patterns

in this set of input operands.

Third, we then check the hit rate of the chosen frequent

patterns using another set of data. We also vary the number of

stored input patterns for each layer. Note that, for the sake of

simplicity, we always use the same number of stored patterns

for each layer. As shown in Fig. 3, we can see that layer-based

matching leads to higher hit rate than global-based matching.

From now on, we conduct all of our experiments using layer-

based approach. We also observe that as the number of stored

patterns increases, the hit rate also increases. However, the

hit rate still remains low, at around 10%, even if we store

50 patterns for each layer. Thus, we improve the hit rate by

developing approximation techniques as described in the next

section.

B. Approximate Pattern Matching

As shown in Fig. 3, even if we use layer-based pat-

tern matching, the hit rate is still low. Thus, we pro-

pose the use of approximate pattern matching for float-

ing point numbers instead of exact matching, i.e., we

only match for limited bit width. For example, there are

two floating point numbers 0.45 and 0.451, with their

IEEE 754 format as 00111110111001100110011001100110

and 00111110111001101110100101111001. If we use exact

matching, then 0.451 would not match 0.45. However, if we

use 9-bit matching, then 0.451 would match 0.45-because their

first 9 bits (sign bit and exponential bits) match. In this case,

their first 16 bits (sign bit, exponential bits and 7 mantissa bits)

are identical so they will match even under 16-bit matching

mode. We use four different approximate matching modes to

measure the hit rate: 9-bit, 10-bit, 11-bit, and exact matching,

as illustrated in Fig. 4. We can see that as we increase the

approximation level, the hit rate also increases significantly

even by 1 bit. For example, by storing 50 patterns (for each

layer), a 10-bit approximation can have hit rate at 57.1% while

9-bit approximation can have hit rate at 82.6%, which is 56%

higher.
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Fig. 4. The hit rate of approximate pattern matching.

But note that the increased hit rate does come with a

cost. Rather than returning the exact computation result, the

approximate pattern matching will return an inexact result.

And as we increase the approximation level, the extent of

inaccuracy will also increase. We explore several different

approximate matching modes in Section IV-B by varying the

matching bit width and number of stored patterns to maximize

the energy savings while keeping the accuracy loss minimal.

C. Bloom Filters

To implement approximate pattern matching at the hardware

level, we employ BFs. The detected frequent patterns are

stored in a set of BFs, and the BFs are integrated to the

multiplier. The number of BFs equals to the number of distinct

output values generated by the frequent patterns. Each BF

stores the patterns corresponding to its assigned output value.

BFs are known as compact storage units that provide

an approximate response to the membership queries. A BF

consists of a number of hash functions and a Bloom vector

(BV). To store a set of inputs in the BF, the hash functions are

executed for each input generating addresses to the BV. For

each input, the corresponding bits of the BV determined by

the hash functions are set to 1. To search for a given input

in the BF, the same hash functions generate addresses for

an incoming input, and the corresponding bits are checked

in the BV. If all the bits are 1, the input is stored in the BF.

Otherwise, the input does not exist. The overall architecture of

using BF for approximate pattern matching is shown in figure

5. In order to enable the approximate pattern matching, we

store approximated input patterns in the BF. We resize each

input of the multiplier to apx bit bits by selecting its apx bit

most significant bits and concatenate them into a single vector.

The obtained vector forms an input to the hash functions which

determine bits to be set in the BFs. Similarly, to investigate

the approximate pattern matching of incoming inputs to the
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Fig. 5. The implementation of approximate pattern matching.

multiplier, the inputs are re-sized and concatenated before

going to the hash functions. Then, the bits in the BV specified

by the hash functions determine whether the incoming pattern

of the multiplier is matched or not. In case of matching, the

multiplier is clock-gated to avoid the re-execution and the

output in the register corresponding to the BF is returned as

the output of the multiplier.

Due to the characteristics of hash functions and the limited

size of the BV, BF has a false positive (FP) error where

BF wrongly confirms the presence of an input. However, the

rate of the false positive, which is shown in equation 1, is

dependent on several parameters such as the number of input

operands stored in the BF (n), the number of hash functions

(k) and the size of the BV (m) [8][3]. Therefore, FP can be

tuned by properly setting the mentioned parameters.

FP = (1− e−
nk

m )k (1)

Since most of today’s applications such as neural net-

works demonstrate tolerance to the controlled imprecision in

computations, in this work, BFs are adapted to implement

approximate pattern matching and recall the computations in

neural networks. To further improve the energy consumption

of the computations, we employ resistive memory elements

to implement Bloom vectors, which exhibit significant energy

savings than its CMOS counterparts [2]. Moreover, resistive

memory consumes little area overhead as it can be imple-

mented on top of the chip [14].

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this work, we use tiny-dnn [1], a header only, dependency

free deep learning library written in C++, as our evaluation

platform. For CNN, we use LeNet-like architecture as illus-

trated in Fig. 2. We use MNIST (Mixed National Institute of

Standards and Technology) database of handwritten numbers

[18] as our dataset to evaluate the accuracy. The dataset

is split into a training set and a test set with 60,000 and

10,000 28 × 28 images. We randomly select 5% of the

training input data to profile the frequent input operands. To

estimate the energy consumption of the proposed design, we
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Fig. 6. Neural network accuracy loss due to approximate pattern matching.

implement the hash functions using Verilog, and we extract

the Verilog implementation of a six-stage pipelined floating

point multiplier using FloPoCo [7]. Then, the implementations

are synthesized using Synopsys Design Compiler, with 45 nm

standard CMOS library. The operating voltage is set to 1.0V

and the clock period is 1.5 ns. In addition, Bloom vectors

(BV) are designed with resistive 1T1R cells using HSPICE,

where RON is set to 1K Ω and ROFF to 1M Ω [23]. Bloom

filters can be used in different hardware platforms, including

CPU [10], FPGA [8], and GPU [2].

B. Accuracy Loss

As described in Section III-B, the BF will return an inexact

result due to approximate pattern matching. Thus, we investi-

gate here on how the approximation level impacts the neural

network accuracy. We vary the approximate pattern matching

mode from 8-bit matching to 11-bit matching and store 10

most frequent patterns for each of the approximation modes

with a FP rate of 0.001. Fig. 6 shows the accuracy under

each configuration. The baseline accuracy is 98.5% without

any approximations. The 8-bit matching introduces aggressive

approximation because it does not cover the last bit in the

exponent bits, which leads to only 60.6% accuracy. Starting

from 9-bit matching, the accuracy loss is insignificant. Note

that 9-bit matching covers the sign bit and exponent bits for

floating point numbers. This indicates the high error-tolerance

of neural networks to data imprecision.

According to Fig. 4, 9-bit matching gives us the highest hit

rate among the approximation modes which introduces little

drop on neural network accuracy. Thus, using 9-bit matching

as our approximation mode, we then investigate how the

accuracy will vary with the number of stored frequent patterns.

As shown in Table I, various number of stored patterns under

9-bit matching have little impact on neural network accuracy.

The lowest accuracy is 97.2% under the (9, 50) configuration,

meaning that we use 9-bit approximate pattern matching and

store 50 input patterns.
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TABLE I

ENERGY SAVINGS AND NEURAL NETWORK ACCURACY ACROSS

DIFFERENT BF SETTINGS.

Matching Mode (BV size, #Hash Fn, #inp BF) Hit Rate NN Accuracy Esave

(8, 10) (64, 2, 1) 66.9% 60.6% 58.9%

(9, 5) (64, 2, 1) 28.9% 97.5% 24.9%

(9, 10) (64, 2, 1) 45.7% 97.4% 37.9%

(9, 20) (64, 2, 1) 60.7% 97.9% 45.4%

(9, 30) (64, 2, 1) 70.6% 97.4% 47.5%

(9, 30) (32, 3, 1) 70.6% 97.4% 41.6%

(9, 40) (64, 2, 1) 77.3% 97.3% 47.3%

(9, 50) (64, 2, 1) 82.3% 97.2% 44.7%

(10, 10) (64, 2, 1) 30.4% 98.3% 22.3%

C. Energy Savings

We use several different matching modes and BF con-

figuration to compute the energy savings and the resulting

neural network accuracy as shown in Table I. The matching

mode (appx bit,#inp) refers to how many bits we use for

approximate pattern matching and the number of patterns we

store. The BF setting (BV size, #hash Fn, #inp BF) refers to

BV size in bit length (m), number of hash functions (k) and

number of input patterns stored in each BF (n). For example,

the BF setting at (64, 2, 1) means that we set the BV size

as 64 bits, use 2 hash functions and store 1 input pattern for

each BF. To satisfy the FP rate which can lead to acceptable

accuracy, we carefully select BF configurations.

Table. I exhibits several important facts. First, 9-bit match-

ing is the optimal matching mode here. By comparing with 8-

bit matching and 10-bit matching, we find that 8-bit matching

achieves the most energy saving at 58.9%, but its resulted

neural network accuracy is only 60.6%, a significant accu-

racy drop over baseline accuracy of 98.5%. 10-bit matching

achieves higher accuracy than 9-bit because it introduces

smaller approximation errors into the neural network than 9-

bit matching but its resulting energy saving is only at 22.3%,

which is less than the one obtained with 9-bit matching mode.

Thus, 9-bit matching achieves the better balance between

neural network accuracy and energy savings.

Second, after we fix 9-bit matching mode, we then look

for the optimal number of patterns to store. We vary the

number of stored patterns from 5 to 50. Note that all 9-bit

matching modes, regardless of the number of stored patterns,

achieve accuracy close to the baseline. Thus, we focus on

locating the best energy saving setting. As shown in Fig. 7,

we found that the energy saving increases as the number of

stored patterns increases from 5 to 30 (we call it the first

stage), however the energy saving starts to decrease as the

number of stored patterns increases from 30 to 50 (second

stage). This is because in the first stage, the hit rate increases

as the number of stored patterns increases, which will reduce

the use of multipliers. In the second stage, although the hit

rate still increases, the energy consumption of BFs increases as

the number of stored patterns increases, which dominates the

energy consumption. Thus, we find that the optimal matching

mode is (9, 30).

Third, we also try different settings of BV size and hash

functions. To satisfy the FP error rate of 0.001, we use two
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Fig. 7. Energy Savings under different matching mode.

realistic BF settings, (64, 2, 1) and (32, 3, 1). The BF setting at

(32, 3, 1) consumes more energy than that of (64, 2, 1) because

it uses 3 hash functions, which is the main source of energy

consumption of BFs. In summary, the optimal configuration is

(9, 30) as matching mode and (64, 2, 1) as BF setting. This

leads to a neural network accuracy of 97.4% and energy saving

of 47.5%.

V. RELATED WORK

Thanks to the inherent error resilience of neural networks,

various approaches have utilized approximate computing tech-

niques to improve cost and energy efficiency. One typical

approach is to use inexact designs to replace normal compu-

tation units, mostly multipliers because they account for most

energy consumption in computation part. Venkataramani et al.

evaluates the impact of different neurons on neural network

accuracy and selectively approximate the less-critical neurons

with dynamically congurable accuracies [21]. A Similar work

[24] replaces the less-critical neurons with approximate ones

and skip some neuron operations. These two works focus on

finding the opportunities for approximate computing without

significantly degrade the accuracy. Another two works focus

on designing inexact hardware to trade for energy efficiency.

Du et al. proposed an inexact multiplier design using an

inexact logic minimization method, and emphasizes the need

to approximate multipliers rather than adders. A hardware opti-

mization approach was proposed in [19] to design multipliers

in a uniform way that suits physical VLSI implementation.

However, such approaches can result in an accuracy drop and

ask for retraining to mitigate the accuracy loss. Furthermore,

such inexact logic design is not flexible in the sense that it is

not reconfigurable once it has been physically implemented,

making it less general to different types and architectures of

neural networks.

Due to value locality and similarity presented in various

applications, computation reuse has been exploited to improve

operational efficiency. Rahimi et al. uses content addressable
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memory (CAM) to perform computation reuse in GPU and

perform voltage scaling on CAM to enable approximate pat-

tern matching within a specified hamming distance [20][15].

However, such approximate pattern match is hard to control

because the bit mismatches could also occur in the exponent

field. In addition, BFs offer energy efficient storage units

because of exploiting small memory unit (i.e., Bloom vector)

to represent a set of input patterns. This superiority is acquired

at the cost of inaccuracy incurred by FP. CAM consumes

relatively large energy, area and manufacturing cost. Therefore,

people starting using BFs to enable computation reuse in

CPU [10] and GPU [2].

In summary, our work differs from the previous works in

two aspects: 1) We propose the first approximate Bloom filters

to exploit and enhance the computation reuse opportunities.

Such BF design can enable a reconfigurable as well as a

controllable approximation by matching patterns with specific

bit positions. 2) This approach does not require retraining and

the approximation level can be tuned to satisfy the accuracy

constraints.

VI. CONCLUSIONS

In this work, we exploit the computation reuse oppor-

tunities in neural networks and enhance such opportunities

by performing approximate pattern matching. We design an

approximate BF architecture to physically implement the ap-

proximate pattern matching function and tightly integrate it

with computation units. By storing the frequent computation

patterns, BFs can recall the computation results to avoid the

overhead due to redundant executions on computation units.

Our experimental results show 47.5% energy reductions of

multiplication is obtained with classification accuracy degrada-

tion at 1% for convolutional neural networks. Our future works

focus on investigating whether the variances of datasets and

neural network types and architectures have an impact on the

computation reuse opportunities. If so, then we may design

a neural network that can maximize the computation reuse

opportunities.
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