
S-gram: Towards Semantic-Aware Security Auditing for
Ethereum Smart Contracts

Han Liu*†
School of Software
Tsinghua University

Beijing, China
liuhan2017@tsinghua.edu.cn

Chao Liu
Peking University
Beijing, China

liuchao_cs@pku.edu.cn

Wenqi Zhao
Ant Fortune Business Group

Ant Financial
Beijing, China

muhan.zwq@antfin.com

Yu Jiang‡
School of Software
Tsinghua University

Beijing, China
jy1989@tsinghua.edu.cn

Jiaguang Sun
School of Software
Tsinghua University

Beijing, China

ABSTRACT
Smart contracts, as a promising and powerful application on the
Ethereum blockchain, have been growing rapidly in the past few
years. Since they are highly vulnerable to different forms of at-
tacks, their security becomes a top priority. However, existing se-
curity auditing techniques are either limited in finding vulnerabil-
ities (rely on pre-defined bug patterns) or very expensive (rely on
program analysis), thus are insufficient for Ethereum.

To mitigate these limitations, we proposed a novel semantic-
aware security auditing technique called S-gram for Ethereum.The
key insight is a combination of N-gram language modeling and
lightweight static semantic labeling, which can learn statistical reg-
ularities of contract tokens and capture high-level semantics as
well (e.g., flow sensitivity of a transaction). S-gram can be used
to predict potential vulnerabilities by identifying irregular token
sequences and optimize existing in-depth analyzers (e.g., symbolic
execution engines, fuzzers etc.). We have implemented S-gram for
Solidity smart contracts in Ethereum.The evaluation demonstrated
the potential of S-gram in identifying possible security issues.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis; •
Security and privacy→ Software security engineering; •Theory
of computation →Program analysis;

*Alsowith Beijing National Research Center for Information Science and Technology.
†Also with Key Laboratory for Information System Security, Ministry of Education.
‡Correspondence author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09…$15.00
https://doi.org/10.1145/3238147.3240728

KEYWORDS
Smart contracts, security auditing, language modeling, static se-
mantic labeling
ACM Reference Format:
Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun. 2018. S-gram:
Towards Semantic-Aware Security Auditing for Ethereum Smart Contracts.
In Proceedings of the 2018 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering (ASE ’18), September 3–7, 2018, Montpellier,
France.ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3238147.
3240728

1 INTRODUCTION
In recent years, smart contracts have been introduced to enable
more flexible application scenarios than Bitcoin [16]. Generally,
smart contracts are a special form of computer programs that re-
spond to blockchain transactions. However, due to the nature of
smart contracts as programs, they are highly vulnerable to various
types of security attacks. We use the simplified scenario in Figure 1
to explain the DAO attack in June 2016. Specifically, an attacker
identifies a victim contract with a vulnerable function, i.e., trans-
fer (Step 1). He or she further deploys a contract to exploit the
vulnerability, i.e., () fallback function (Step 2). Next, the attacker
calls transfer. When executing the money transfer operation at
line 1 before the balance updating at line 2, transfer calls the fall-
back function (Step 3). The fallback function calls transfer again
to still more money (Step 4).

Contract Victim:
function transfer() {
1: msg.sender.call.value(balances[msg.sender]();
2: balances[msg.sender] = 0;

}

Contract Attacker:
function () {
3: msg.sender.transfer();

}

call transfer() in Victim

deploy Attacker

3

4

1

2

Figure 1: A simplified scenario of DAO attack.

814

https://doi.org/10.1145/3238147.3240728
https://doi.org/10.1145/3238147.3240728
https://doi.org/10.1145/3238147.3240728

ASE ’18, September 3–7, 2018, Montpellier, France Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun

To address the security issues, rule-based and program analysis-
based auditing solutions have been proposed. Unfortunately, the
former is limited in handling unknown patterns and the latter can
be expensive thus unscalable in practice. In this paper, we focus
on the Ethereum blockchain and highlighted the task of efficient
semantic modeling of smart contracts. However, to fulfill this task
is challenging due to the balance between accuracy and scalability.
We outlined the main challenges below.
Challenge 1: Model Ethereum Mechanism. Ethereum has
defined a set of special mechanisms, e.g., gas system, data storage
etc., which must be considered.
Challenge 2: Encode StorageAccess. Smart contracts in Ethereum
are stateful, with storage holding the state data. Finding security
issues often requires reasoning about access on storage data. Effi-
ciently encoding the accesses without loosing too much accuracy
becomes an important problem.
Challenge 3: Identify Flow Sensitivity. Transactions are flow
sensitive, i.e., security-critical operations are vulnerable under spe-
cific control flow conditions. Yet, the flow sensitivity analysis can
hardly scale.
Semantic-Aware Security Auditing. In this paper, we have
proposed S-gram, a semantic-aware security auditing technique for
Solidity smart contracts in Ethereum to address the aforementioned
challenges. The key insight behind S-gram is a combination of
N-gram based language modeling and lightweight static contract
analysis. Leveraging S-gram to identify security issues enables fast
and scalable auditing since the languagemodel is trained only once
and the auditing is reduced to calculating probabilities. During the
model training, S-gram uses lightweight static analysis to gener-
ate semantic meta data (e.g., access dependency, flow sensitivity
etc.) and further help the model learn more semantic regularities,
e.g., money transfer is always wrapped by a predicate associated
with msg.sender. Then, based on a S-gram language model, we
can predict potential vulnerabilities by identifying irregular con-
tract token sequences. Moreover, S-gram can interface to exist-
ing in-depth analyzers as an optimization pass. We have imple-
mented S-gram and evaluated it on Ethereum contracts. The re-
sults demonstrated the potential of S-gram in accurately identify-
ing security issues.

2 BACKGROUND
2.1 Ethereum Smart Contracts
A smart contract is a special form of programs at a specific ad-
dress on blockchain. In our setting, we focus on Ethereum smart
contracts written in Solidity language [9]. Besides, a contract ad-
dress includes its own storage (i.e., permanent state data) and a
amount of “Ether” balance (i.e., Ethereum cryptocurrency). More-
over, Solidity provides developers with a variety of APIs to im-
plement specific business logic, e.g., send money to some address
or retrieve the blockchain information. We summarize the major
uniqueness of Solidity smart contracts below.
Data Location Data is stored in different locations. By default,
state variables and function local variables are stored in storage.
Function parameters are stored in memory.

Entry Point Every public callable function of a contract is a valid
entry point. That is, no explicit main entry exists.

Exception Handling Exceptions cause the execution of a smart
contract to stop and all the side effects get reverted. With excep-
tions manifested by APIs as call, send and delegatecall, a false
returns and execution continues.

Gas System In Ethereum, every instruction consumes a specific
gas value. Programmers are allowed to specify a gas limit by
explicitly using gas() API for a transaction.

2.2 Statistical Language Model
A statistical language model (SLM) is a probability distribution
on different sequences of words. SLM based techniques have been
widely applied in software engineering tasks [11, 13, 17, 20, 21].
Mathematically, for a token sequence s = t1t2 · · · tn , SLM esti-
mates its probability as a production of a series of conditional prob-
ability, P(s) = P(t1) ·

n∏
i=2

P(ti |t1, · · · , ti−1). The N-gram model is

further introduced to approximate the computation by considering
only a limited prefix with length N . Therefore, P(ti |t1, · · · , ti−1) is
reduced to counting the occurrences below

P(ti |t1, · · · , ti−1) =
count(ti−(n−1) · · · ti−1, ti)
count(ti−(n−1) · · · ti−1)

(N-gram)

Based on N-gram, to better interpret the probability of a program
s = t1t2 · · · tn as a sequence of tokens, we use the measurement
perplexity or its log-transformed version cross-entropy [15], which
is defined as HM(s) = − 1

n logpM(t1 · · · tn). According to the N-
gram model (n = k), the formula amounts to

HM(s) = −1
n

n∑
1

logpM(ti | ti−k+1 · · · ti−1) (Perplexity)

Given a program, SLM can estimate its perplexity via perform-
ing the aforementioned calculation. In the context of smart con-
tracts, we highlighted the possibility of associating statistical reg-
ularities (SLM perplexity) with the distribution of bugs. To this
end, an SLM should be sensitive to “bug-relevant perplexity” rather
than “bug-irrelevant perplexity”, which is commonly caused by
application-specific data, coding convention etc..

3 SEMANTIC-AWARE SECURITY AUDITING
3.1 General Framework
In this section, we introduce the general framework of S-gram,
as shown in Figure 2. S-gram works in a two-phase manner, i.e.,
model construction phase and security auditing phase, respectively.
In the model construction phase, the input is a large collection of
smart contract corpus. Given a contract from the corpus, a Static
Analyzer performs lightweight analysis to generate semantic meta-
data, e.g., access dependency and transaction flow sensitivity.Then,
a Tokenizer parses the contract into a token sequence with the se-
mantic metadata labeled. Next, S-gram enables the N-gram based
Training Engine to train an S-gram language model.

In the security auditing phase, the input is a audit target smart
contract. Similarly, the contract is parsed into a token sequence
by the Static Analyzer and the Tokenizer. Based on the S-gram lan-
guagemodel, aDetector scans the token sequence to identify “irreg-
ular” subsequences, i.e., ones with high perplexityw.r.t. the S-gram
language model, as candidate vulnerabilities [18, 22]. Furthermore,
S-gram enables a Ranker to sort all functions based on a “security

815

S-gram: Towards Semantic-Aware Security Auditing for Ethereum Smart Contracts ASE ’18, September 3–7, 2018, Montpellier, France

contract Tokenizer

Static
Analyzer

Training
Engine

S-Gram

contract

Token Sequence

Detector

Corpus

Audit Target

Ranker

Candidates
In-depth
Analyzer

<function 1: score 1>
<function 2: score 2>
<function 3: score 3>

Scores

Cascading Interface

Vulnerabilities

Model Construction Phase

Security Auditing Phase

Semantic
Metadata

Figure 2: The general S-gram framework.

score”. With the ranking, S-gram can interface to an existing in-
depth analyzer in a smarter way, e.g., forcing a symbolic execution
engine to execute functions as ranked.

3.2 Semantic Metadata Generation
Given a smart contract, S-gram first performs a lightweight static
analysis to generate semantic metadat, i.e., storage access depen-
dency and flow sensitivity in our setting. Next, we describe the de-
tails of semantic metadata generation using a contract in Figure 3
(we replace brackets with colons to save space).

1 contract Reward:

2 uint prize;

3 address owner;

4 modifier costs(uint _prize):

5 require(msg.value <= _prize);

6 _;

7 function Reward(uint _prize):

8 prize = _prize;

9 owner = msg.sender;

10 function update(uint _prize) public { prize = _prize; }

11 function reward(address recv) public costs(prize):

12 require(prize != 0);

13 if(msg.sender == owner) {

14 recv.call.value(prize)();

Figure 3: An example Solidity smart contract used for ex-
plaining semantic metadata generation

Encode Storage Access. Storage data is persistent across trans-
actions, thus can greatly influence the behavior of smart contracts.
In Figure 3, the contract Reward has two state variables prize and
owner, which are initialized in the constructor (line 7-9). Analyz-
ing accesses on storage enables effective security auditing of smart
contracts. For instance, when seeing a transaction call to the func-
tion rewardwith the prize storage value to be 10, a malicious miner
can post and prioritize another transaction to the update function
which sets prize to 0 (line 10) and pose a denial-of service (DoS)
attack by failing the check at line 12.

However, reasoning about the accesses on prize is not easy.
Specifically, we must consider its assignment (line 10) and path

conditions (line 5 and 12). In S-gram, we propose an efficient and
abstract way to encode accesses on storage data, which is based
on the transaction dependency relation (denoted as Dt). More for-
mally, we define an storage access event e = ⟨a,x , t⟩, where a is
the storage address, x ∈ {W ,R} indicates whether the access is a
write or read operation, t ∈ {R,L} specifies whether the storage
value is dependent on other possible transactions (R, short for Re-
mote) or not (L, short for Local). Given two storage access events
e1 and e2, we use F1 and F2 to denote two sets of public functions
that can reach them, and C1 and C2 to represent two sets of path
conditions for e1 and e2. In Figure 3, prize accesses at line 10 and
line 12 have F1 = {update} and F2 = {reward}.C1 andC2 areφ. For
any pair of storage accesses e1 = ⟨a1,x1, t1⟩ and e2 = ⟨a2,x2, t2⟩,
we define that e1 is transaction-dependent on e2 (vice versa), i.e.,
⟨e1, e2⟩ ∈ Dt below.

(a1 = a2 ∧ (x1 =W ∨ x2 =W)) ∧
(∃f1 ∈ F1 ∧ f2 ∈ F2, f1 , f2 ∨

(f1, c1) ∈ C1 ∧ (f2, c2) ∈ C2 ∧ f1 = f2 ∧ c1 , c2)

Conceptually, if e1 is dependent on e2, the storage data accessed
by e1 and e2 may differ in two transaction scenarios, i.e., e1e2 and
e2e1. In that case, we label the t1 and t2 fields of both e1 and e2 as R
(Remote), otherwise L (Local). In the contract of Figure 3, the access
on prize at line 10 is a write operation and the access at line 12 is
a read operation. Since they are reached by function update and
reward respectively, they are transaction-dependent on each other
and marked as Remote. The owner state variable is only accessed at
line 13, thus marked as Local.
Identify Flow Sensitivity. Furthermore, S-gram identifies crit-
ical operations (e.g., storage accesses, money transfer etc.) and ab-
stracts their flow conditions as well. To this end, we aim at infer-
ring potential connections between critical operations and their
flow conditions, e.g., a secure money transfer is often guarded by
a sanity check on the address of the transaction sender.

Given a critical operation s , we use c1c2 · · · cn to denote all the
flow conditions. We use A(c) to hold a set of addresses involved
in c and O(c) to include a collection of operators associated with
the storage data in c . Then w.r.t. s , the overall address set A(s)
and operator set O(s) include all its flow conditions. In Figure 3,
with s to be the call operation at line 14, its A(s) = {msg.sender}

816

ASE ’18, September 3–7, 2018, Montpellier, France Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun

and O(s) = {<=, !=, ==}. Based on these two sets, S-gram can sta-
tistically learn a probability distribution on how flow conditions
relate to critical operations, e.g., function calls on addresses are
more likely to follow address-based flow conditions, transaction-
dependent storage accesses always follow equivalence-based (e.g.,
!= and ==) flow conditions.

3.3 Tokenization
With the semantic metadata generated, S-gram performs a tok-
enization process which parses smart contract code into token se-
quences. Particularly, the parsing is realized by traversing the ab-
stract syntax tree (AST) of a contract in a type-based manner, i.e.,
tokens are generated w.r.t. specific types of AST nodes. Figure 4
shows the AST1 of the reward function in Figure 3. Each node has
a specific type, e.g., CallExpr, BinaryExpr, ID etc.. Each node value
is a lexeme of the contract, e.g., msg, address, 0 etc..

Type
address

FuncParam
recv

ModifierArg
public costs

FunctionDeclaration
reward

ID
prize

CallExpr IfStatement

ID
require

BinaryExpr
!=

ID
prize

Literal
0

BinaryExpr
==

MemberExpr

ID
msg

ID
sender

ID
owner

CallExpr

MemberExpr

ID
recv

ID
call

MemberExpr

ID
value

ID
prize

modifiersparams body

Figure 4: The AST of the reward function in Figure 3.

Type-based Tokenization. In S-gram, the contract tokeniza-
tion process is done in a type-based manner so as to capture high-
level semantics. Given (e, t) to be an AST node where e is the lex-
eme value and t is the AST type, the extracted token tk follows the
rules described in Table 1.

Specifically, the first group of rules are designed for storage ac-
cesses with UnaryExpr, AssignExpr and BinaryExpr. In these cases,
S-gram generates two tokens, i.e., cf:O(eu) which contains all the
operators in its flow conditions and t [T (au)xutu] which attaches
access event information.The second group of rules targets at func-
tion calls. In cases of send and transfer, S-gram creates a token
call_min_gas. In terms of call and value calls, call_all_gas is gen-
erated since the call will forward all the available gas. Other calls
are parsed into call_normal. As for arguments of the value and
gas call, we firstly generate a prefix i.e., eth: and gas: respectively.
Then, we use the lexeme for Literal arguments and data type for
ID arguments. Remaining rules are specified to handle other spe-
cial AST types. To implement the tokenization, we defined a state-
ful AST Visitor in S-gram, which traverses the AST and employ
the rules to generate corresponding tokens. Based on a large se-
quence of generated tokens, S-gram leverages well-designed N-
gram toolkits to build the language model and set N empirically.

1We use the AST defined in solidity-parser [8]

3.4 Prediction
Vulnerability prediction in S-gram is realized via identifying the
irregular token sequences in the contract, i.e., with low probability
w.r.t. the S-gram language model. Given a function f , S-gram col-
lects all the possible token sequences into a setT = {t1, t2, · · · , tm }
and computes a probability probM(ti) for each sequence w.r.t.M.
Based on a prediction size of K (the maximum length of token se-
quence considered), we use Predicted(T ,K ,M) to denote the K se-
quences in T with the least M probabilities, and potential set of
vulnerabilities as well. In our evaluation, we set K as a variable
and explored how K can affect the efficacy of S-gram. In addition,
S-gram leverages several pre-defined rules to filter false positives.
Specifically, for a sequence t containing only scope tokens, e.g.,
function_begin and function_end, S-gram directly throws it. If t
and its subsequence t ′ are both flagged as potential vulnerabilities,
S-gram only reports one of them.

3.5 Ranking
Through vulnerability prediction, we can identify a group of po-
tential security issues. In order to interface to in-depth analyzers,
S-gram generates a ranking on contract functions to help explore
contracts more efficiently. Given a function f and language model
M, we calculate a probability probf = 1

n
∑n
i=1 prob(ti) where ti

is a token sequence within f . Furthermore, we count the number
Nf of token sequences of f that are in the Predicted set. Based on
probf and Nf , S-gram computes a security score Scoref for f as a
linear function Scoref = a∗probf + b

M ∗Nf (a andb are parameters
which can be automatically learned via labeled data) and further
ranks all functions.

4 EMPIRICAL EVALUATION
4.1 Dataset and Setting
We have implemented S-gram into a security auditing tool called
Ether⋆.The S-gram languagemodel was trained via the KenLM [2]
library. The training set of S-gram language model was collected
from the Etherscan repository [1], including 43,553 deployed open
source contracts. The testing set contains 1,500 smart contracts.
Evaluation data is publicly available at https://github.com/njaliu/
sgram-artifact. We selected Oyente [14] to confirm vulnerabilities.
and used the pure N-gram approach (consider only lexemes) as a
baseline comparison with S-gram.

4.2 Empirical Results
We first investigated the security auditing capability w.r.t. differ-
ent configurations of S-gram. Figure 5 showed the number of real
vulnerabilities found by Ether⋆ with prediction size K = 20. Re-
garding different S-gram configurations, Ether⋆ managed to find
3.32 to 6.94 vulnerabilities in the top 20 flagged potential security
issues on average. That said, S-gram is able to generate a small but
effective set of candidate vulnerabilities in practice. In terms of six
differently configured S-gram models, i.e., N = 2 · · · 7, N = 5 per-
formed the best while N = 2 is the worst. This can be explained
as: bigram failed to capture the majority of statistical regularities
in smart contracts. Therefore, we constructed S-gram language
model using 5-gram.

817

https://github.com/njaliu/sgram-artifact
https://github.com/njaliu/sgram-artifact

S-gram: Towards Semantic-Aware Security Auditing for Ethereum Smart Contracts ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: Type-based tokenization rules. T (a) gets the type of the variable pointing to the storage address a.

Value of tk Rules of tokenization
cf:O(eu) t [e][T (au)xutu] t is UnaryExpr, whose access event eu = ⟨au ,xu , tu ⟩

cf:[O(el),O(er)] t [e][T (al)xl tl ,Tar xr tr] t is AssignExpr or BinaryExpr, whose left and right access events are el =
⟨al ,xl , tl ⟩ and er = ⟨ar ,xr , tr ⟩

cf:[A(ec)] call_min_gas t is CallExpr, whose call event is ec and callee is send or transfer
cf:[A(ec)] call_all_gas t is CallExpr, whose call event is ec and callee is call or value
cf:[A(ec)] call_normal t is CallExpr, whose call event is ec and callee does not include require, assert

and fit into above
eth:e t is Literal, (e, t) is an argument of value CallExpr

eth:T (e) t is ID, (e, t) is an argument of value CallExpr
gas:e t is Literal, (e, t) is an argument of gas CallExpr

gas:T (e) t is ID, (e, t) is an argument of gas CallExpr
sol:ts t is ID, e is either now or block.timestamp

sol:unit t is Literal and e is one of the following values: wei, finney, szabo, ether, sec-
onds, minutes, hours, days, weeks or years

sig:e t is String, (e, t) is an argument of call CallExpr
t t is Modifier or Literal, e.g., 100, “token”
e otherwise

Figure 5: X-axis: value of N . Y-axis: the number of vulnera-
bilities found by Ether⋆. Prediction size: K = 20.

(a) Auditing accuracy (b) Number of vulnerabilities

Figure 6: Comparison between S-gram and Baseline.

Next, we further explore how the prediction size K related to
the vulnerability detection capability of Ether⋆, as shown in Fig-
ure 6b (left bar). With the increase of prediction size, Ether⋆ man-
aged to find more vulnerabilities. However, the growth rate be-
comes slower from small to large K values. Moreover, we con-
ducted comparison experiments to compare S-gram and the base-
line approach, i.e., N-gram based technique. Results are shown in
Figure 6. Specifically, Figure 6a displayed the auditing accuracy of

Table 2: Performance of cascading analysis with Ether⋆.
Time unit: second. Opt: optimization

Contract LOC ReGuard Ether⋆ Opt
DWorldDeed 2144 23.49 16.10 31.46%

CanReclaimToken 2148 26.11 16.74 35.89%
usingOraclize 2219 31.73 19.23 39.39%

Court 2869 39.08 11.02 71.80%
EtherToken 3257 48.12 9.87 79.49%

both techniques. Under different prediction sizes, S-gram achieved
an accuracy from 91.2% to 94.2% while the baseline can only climb
to 85.3%. Furthermore, S-gram outperformed the baseline approach
by finding 169.1% more problems.

4.3 Cascading In-depth Analysis
In the evaluation, we combined Ether⋆withReGuard [12], a fuzzer
designed for identifying reentrancy vulnerabilities in Solidity smart
contracts. Specifically, we used Ether⋆ to rank functions and fur-
ther optimize transaction sequence generation in ReGuard. Table 2
summarized the performance of with and without Ether⋆. Using
Ether⋆, ReGuard became more efficient when auditing smart con-
tracts in all cases. Time saved by Ether⋆ spans from 31.46% to
79.49% w.r.t. the five contracts picked.

5 RELATEDWORK
Smart Contract Analysis. Smart contracts have been attract-
ing increasing research interests during the past several years, es-
pecially in the contextof security. Atzei et al. investigated known
attacks on smart contracts and highlighted a classification of typi-
cal bugs and vulnerabilities [6]. Hildenbrandt et al. have designed
the KEVM for Ethereum with formal semantics in the K language
and support for a set of security analysis [10]. To find bugs in smart
contracts, Bhargavan et al. introduced a general framework which

818

ASE ’18, September 3–7, 2018, Montpellier, France Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun

converts smart contracts to the F ∗ language programs for formal
verification [7]. Abraham et al. defined the notion of Effectively
Callback Free objects so as to enablemodular reasoning on callback
operations of smart contracts [3]. Luu et al. proposed Oyente, a
bug finder based on the symbolic execution technique to detect pre-
defined bug patterns [14]. Focusing on reentrancy attacks, Liu et al.
introduced ReGuard to fuzz testing smart contracts [12].
Statistical Language Models of Code. Software code resem-
bles natural languages. Hindle et al. defined the statistical regular-
ities of software as naturalness [11]. Nguyen et al. built a language
model using sememeswhich carrymore semantic information than
pure lexemes [17]. While a language model can capture global sta-
tistical characteristics, Tu et al. proposed a cache language model to
include local programming patterns that are specific to personal
projects [21]. Based on language models, Allamanis et al. intro-
duced techniques to learn coding conventions [4]. Raychev et al.
and Allamanis et al. proposed to predict names for both variables,
methods and classes [5, 19]. Liu et al. highlighted a stochastic tech-
nique to optimize program obfuscation based on statistical lan-
guage models [13]. In the context of debugging and bug finding,
Yu et al. leveraged the N-gram model to improve software fault lo-
calization with a special focus on GUI applications [23]. Ray et al.
investigated the naturalness of buggy code and used the entropy
measurement to predict defects in a project [18]. Wang et al. fur-
ther extended the approach via training code at a higher level, e.g.,
statements and method calls, in order to capture semantic bugs
more effectively [22]. Compared to existing techniques, S-gram
introduced a novel language model for smart contracts which is
designed to efficiently capture domain-specific semantics.

6 CONCLUSION
In this paper, we present the S-gram semantic-aware security au-
diting technique for Ethereum smart contracts. Specifically, S-gram
highlighted the insight that statistical abnormality is very much
likely to indicate the existence of vulnerabilities. S-gram first per-
forms static semanticmetadata generation and type-based tokeniza-
tion to prepare token sequences and construct a statistical language
model. Next, S-gram enumerates and ranks all possible token se-
quences of a contract to be analyzed, then flags those with least
probabilities as potential vulnerabilities.We have prototyped S-gram
as Ether⋆ and evaluated it on Ethereum contracts. Ether⋆ achieved
an over 90% accuracy in identifying different types of potential vul-
nerabilities. Furthermore, Ether⋆ managed to uncover several pre-
viously unknown security issues and improved the efficiency of
a Solidity fuzzer as well. In the future, we plan to extend S-gram
on other blockchain ecosystems with different statistical language
models.

ACKNOWLEDGMENT
We thank anonymous reviewers for their comments on the pa-
per. We thank Zhiqiang Yang for helping prepare the evaluation
datasets. This research is sponsored in part by NSFC under Grant

No.: 61527812, National Science and Technology Major Project un-
der Grant No.: 2016ZX01038101, MIIT IT funds (Research and ap-
plication of TCNkey technologies) of China, National Key Technol-
ogy R&D Program under Grant No.: 2015BAG14B01-02, and China
Postdoctoral Science Foundation under Grant No.: 2017M620785.

REFERENCES
[1] [n. d.]. Etherscan. https://etherscan.io/.
[2] [n. d.]. KenLM. https://github.com/kpu/kenlm.
[3] ITTAI ABRAHAM, GUY GOLAN-GUETA, YAN MICHALEVSKY, NOAM

RINETZKY, and YONI ZOHAR. [n. d.]. Online Detection of E ectively Callback
Free Objects with Applications to Smart Contracts. ([n. d.]).

[4] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing Natural Coding Conventions. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE 2014). 281–293.

[5] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting Accurate Method and Class Names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015). 38–49.

[6] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts (SoK). In International Conference on Principles of
Security and Trust. Springer, 164–186.

[7] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, A Rastogi, T Sibut-Pinote, N Swamy,
and S Zanella-Beguelin. 2016. Formal verification of smart contracts. In Pro-
ceedings of the 2016 ACMWorkshop on Programming Languages and Analysis for
Security-PLAS’16. 91–96.

[8] ConsenSys. 2018. Solidity Parser in Javascript. https://github.com/ConsenSys/
solidity-parser

[9] Ethereum Foundation. 2018. The solidity contract-oriented programming lan-
guage. https://github.com/ethereum/solidity.

[10] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip
Daian, Dwight Guth, and Grigore Rosu. 2017. KEVM: A Complete Semantics of
the Ethereum Virtual Machine. Technical Report.

[11] AbramHindle, Earl T. Barr, Zhendong Su,MarkGabel, and PremkumarDevanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). 837–847.

[12] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
ReGuard: Finding Reentrancy Bugs in Smart Contracts. In Proceedings of the 40th
International Conference on Software Engineering Companion. IEEE Press.

[13] Han Liu, Chengnian Sun, Zhendong Su, Yu Jiang, Ming Gu, and Jiaguang Sun.
2017. Stochastic optimization of program obfuscation. In Proceedings of the 39th
International Conference on Software Engineering. IEEE Press, 221–231.

[14] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 254–269.

[15] Christopher D Manning and Hinrich Schütze. 1999. Foundations of statistical
natural language processing. Vol. 999. MIT Press.

[16] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Con-
sulted (2008).

[17] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N.
Nguyen. 2013. A Statistical Semantic Language Model for Source Code. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2013). 532–542.

[18] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In
Proceedings of the 38th International Conference on Software Engineering. ACM,
428–439.

[19] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from “Big Code”. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). 111–
124.

[20] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical LanguageModels. In Proceedings of the 35th ACM SIGPLANConference
on Programming Language Design and Implementation (PLDI ’14). 419–428.

[21] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the Localness
of Software. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). 269–280.

[22] SongWang, Devin Chollak, DanaMovshovitz-Attias, and Lin Tan. 2016. Bugram:
bug detection with n-gram languagemodels. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, 708–719.

[23] Zhongxing Yu, Hai Hu, Chenggang Bai, Kai-Yuan Cai, and W Eric Wong. 2011.
GUI software fault localization using N-gram analysis. In High-Assurance Sys-
tems Engineering (HASE), 2011 IEEE 13th International Symposium on. IEEE, 325–
332.

819

https://etherscan.io/
https://github.com/kpu/kenlm
https://github.com/ConsenSys/solidity-parser
https://github.com/ConsenSys/solidity-parser
https://github.com/ethereum/solidity

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum Smart Contracts
	2.2 Statistical Language Model

	3 Semantic-Aware Security Auditing
	3.1 General Framework
	3.2 Semantic Metadata Generation
	3.3 Tokenization
	3.4 Prediction
	3.5 Ranking

	4 Empirical Evaluation
	4.1 Dataset and Setting
	4.2 Empirical Results
	4.3 Cascading In-depth Analysis

	5 Related Work
	6 Conclusion
	References

