
A Static Analysis Tool with Optimizations
for Reachability Determination

Yuexing Wang∗†‡, Min Zhou∗†‡, Yu Jiang∗†‡, Xiaoyu Song§, Ming Gu∗†‡, Jiaguang Sun∗†‡
∗Key Laboratory for Information System Security, Ministry of Education, China

†Tsinghua National Laboratory for Information Science and Technology (TNList), China
‡School of Software, Tsinghua University, China

§Electrical and Computer Engineering, Portland State University, USA

Abstract—To reduce the false positives of static analysis, many
tools collect path constraints and integrate SMT solvers to filter
unreachable execution paths. However, the accumulated calling
and computing of SMT solvers are time and resource consuming.

This paper presents TsmartLW, an alternate static analysis tool
in which we implement a path constraint solving engine to speed
up reachability determination. Within the engine, typical types
of constraint-patterns are firstly defined based on an empirical
study of a large number of code repositories. For each pattern,
a constraint solving algorithm is designed and implemented. For
each program, the engine predicts the most suitable strategy
and then applies the strategy to solve path constraints. The
experimental results on some well-known benchmarks and real-
world applications show that TsmartLW is faster than some
state-of-the-art static analysis tools. For example, it is 1.32x
faster than CPAchecker and our engine is 369x faster than SMT
solvers in solving path constraints. The demo video is available
at https://www.youtube.com/watch?v=5c3ARhFclHA&t=2s.

Index Terms—Reachability determination, constraint pattern,
path constraint solving

I. INTRODUCTION

Static program analysis (SPA) can determine run-time prop-
erties of programs automatically. The results of the technique
may have errors that actually can not be reached. These errors
are called false positives and they are generated because of
the approximation nature of SPA [13].

Many static analysis tools filter false positives by collecting
path constraints and using SMT solvers to get their satisfia-
bility. Unreachable paths are dropped and false positives can
be eliminated. For example, if we use a static analysis tool
to analyze function f in Fig. 1(a) and the analyzed path is
2 → 3 → 4 → 5 → 6 → 7 → 8, the tool can collect path
constraints (a-b>0 && b>a) and use SMT solvers to check
their satisfiability. They are unsatisfiable and the error will not
be reported. False positive is then eliminated and the path is
dropped. The error in Fig. 1(b) is verified reachable.

Although SMT solvers can be used to filter false positives,
the accumulated calling and computing time of SMT solvers
can be long if SMT solvers are used too many times. C-
PAchecker [1] and CBMC [12] are two widely used open
source verification tools for C and C++ programs that integrate
SMT solvers, such as MathSAT5, Z3, Yices2. If the program
to be analyzed has many branches, every branch contributes a
set of path constraints and the calling and computing time of
SMT solvers can occupy a large proportion of the execution
time of CPAchecker or CBMC.

1 i n t f (i n t a , i n t b)
2 i n t c=a−b ;
3 i f (c>0)
4 c=b ;
5 i f (c>a)
6 ERROR;
7 e l s e
8 c=a ;
9 re turn c ;

(a)

1 i n t g (i n t a , i n t b){
2 i f (a+b>10){
3 i f (a−b<5){
4 ERROR;
5 }
6 }
7 i n t c=a+b ;
8 re turn c ;
9 }

(b)

Fig. 1. Examples of using SMT

In this paper, we present TsmartLW, an optimized static
analysis tool. A constraint solving engine (CSE) is designed
and implemented for reachability determination. We define
four constraint-patterns according to a preliminary empirical
study. For each pattern, an especially designed constraint
solving algorithm is presented and implemented. During the
analysis process, the engine first predicts the most suitable
strategy based on statistics. Then the strategy is applied to
solve path constraints.

For evaluation, TsmartLW and CPAchecker are used to
detect divide-by-zero errors in some commonly used bench-
marks and real-world applications. The experimental results
show that TsmartLW is faster than CPAchecker and the CSE
is more efficient in solving path constraints compared with
SMT solvers. On average, TsmartLW is 1.32x faster than
CPAchecker and the CSE is 369x faster than SMT solvers
in solving path constraints.

The rest of this paper is organized as follows. Section 2
introduces some static analysis tools and existing work on
filtering false positives. The core components and algorithms
of our tool are shown in Section 3. Section 4 presents the
experimental results and Section 5 comes with conclusions.

II. RELATED WORK

To ensure the quality of the code, there are two directions,
one is the qualified code generation techniques from the high-
level model, and another is the code analysis and verification
techniques. For the former, there are lots of tools for generating
hardware and software codes from formal verified model [7]–
[9]. For the latter, there are static analysis [1], [12] and dynam-
ic analysis methods [5], [6], In this paper, we mainly focus on
the static analysis tools for C code, such as CPAchecker [1]
and CBMC [12]. CPAchecker integrates some SMT solvers.

978-1-5386-2684-9/17/$31.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Tool Demonstrations

925

We can choose whether to perform a constraint analysis to
drop unsatisfiable paths using SMT solvers. CBMC can use
SMT solvers to check the reachability of each error at the end
of the analysis process.

Many works have been proposed for eliminating false
positives of static analysis, by implementing more precise
context analysis, by SMT solvers and so on. Huang et al.
[4] and Chess et al. [2] believe the scope of the analysis
is important because it determines the amount of context the
tools consider. Kim et al. [11], Junker et al. [10] and Cordeiro
et al. [3] use SMT solvers like CVC3, Boolector, Z3 to drop
unreachable paths and filter false positives. Moreover, we can
also use some techniques to enhance SMT solvers [15] [14].

Different from those works, we implement a static analysis
tool TsmartLW and design a constraint solving engine for
reachability determination to drop unreachable paths and filter
false positives.

TsmartLW

C Program

Builder

Error Paths

gcc

.i files Syntax
TreeCDT

Analyzer

Result CFACSE

Visualizer

XML

Report

Fig. 2. Architecture and workflow of TsmartLW

III. DESIGN OF THE TOOL

As presented in Fig. 2, TsmartLW contains three kernel
components: Builder, Analyzer and Visualizer. The input of
TsmartLW is the analyzed C program and the output is the
error paths of the program.

Builder is used to preprocess the program to be analyzed.
It parses a single .c file to a .i file using gcc. For real world
applications, Builder requires them to contain makefiles. For
each executable module of an application, Builder can capture
the files that the module needs and parse them to .i files using
gcc. If an application consists of many executable modules,
each of them is captured to generate a task and each task
will be analyzed separately by Analyzer. After the program is
transformed to .i files, CDT is used to generate syntax tree.

Analyzer analyzes programs and outputs the results. It
constructs control-flow automatons (CFA) of programs first
using syntax trees. Then it analyzes programs based on CFAs.
Going through all the possible edges from a node to another (to
simulate an operation) iteratively, it can check all the possible
execution paths of programs. The analyzer can find divided-
by-zero errors. During the analysis process, we propose an
optimized method for reachability determination. We use a
CSE instead of SMT solvers to solve path constraints.

Visualizer shows all the errors to users. It transforms the
result of Analyzer to XML format and generates a report. Then

Fig. 3. The resulting interface of TsmartLW

the report is displayed in web form. All the errors and their
paths in the source code are presented.

The builder and visualizer are implemented by ourselves
and the analyzer is implemented based on CPAchecker. The
resulting interface of TsmartLW is shown in Figure. 3. All the
errors and their paths are presented.

In the next two parts, we present constraint-patterns and
their corresponding constraint solving algorithms first and then
show how our CSE utilizes the patterns and algorithms.

A. Definitions of Patterns and Algorithms

This section gives the definitions of patterns and algorithms.
The results of an empirical study are also presented. We define
four kinds of constraint-patterns and the reasonableness of the
four patterns can be seen from the empirical study. For each
pattern, an especially designed constraint solving algorithm is
presented. Before these concepts are introduced, we explain
some basic definitions in Table I.

1) Patterns and Their Corresponding Algorithms: We de-
fine four kinds of constraint-patterns, SingleSymbolicEqual-
ity(SSE), SingleSymbolicInequality(SSI), MultiSymbolicSin-
gleFunction(MSS) and MultiSymblicMultiFunction(MSM).
We also design four corresponding algorithms, Substitution,
Linear, LocalFrame and FullPath. These patterns and algo-
rithms are defined below.

SSE pattern and Substitution algorithm: The constraints
which have SSE pattern should satisfy the two properties.

1. |SymV ar(c)| <= 1
2. Op(c) ∈ {=, 6=}
The corresponding constraint solving algorithm is Substi-

tution. Suppose C is a set of constraints and its pattern is
SSE. There is at most one variable in each constraint and
the operator is equal or not equal. Thus we can solve every
constraint easily and record the variable-value tuples. If we
meet a new constraint, variables in it can be substituted by
values and we can get its satisfiability easily.

SSI pattern and Linear algorithm: Constraints of pattern
SSI should also satisfy some requirements.

1. |SymV ar(c)| <= 1
2. Op(c) ∈ {<,≤}

926

TABLE I
BASIC DEFINITIONS.

Definition Explanation

Constraint Constraint is an assumption statement with all
its variables whose real values can be obtained
from context substituted by their values.

Pattern Pattern describes the structural information about a
constraint or a set of constraints.

Priority Priority denotes the complexity of a pattern. The
pattern of a set of constraints is determined by the
constraint which has the highest priority.

Global Global is the set which contains all the global
variables appearing in the program to be analyzed.

Param ParamF is the set of all parameters of function F .
Ret RetF is the set of variables that are assigned

returned values in function F . Returned values are
the return values of other functions that are called
in F . For example, if F contains a statement like
int a = g(), then a is included in RetF .

SymVar SymV ar(c) is the set that contains all the symbolic
variables in constraint c.

Op Op(c) represents the relational operator in c
Type Type(c) represents the type of constraint c

(equal, less, LessOrEqual).

The corresponding algorithm is Linear. If the pattern of C
is SSI, it means all the constraints in C are of pattern SSE
or SSI. Each constraint has one variable and the operator is
equal, not equal, less or LessOrEqual. The relations between
variables in different constraints are linear. It is easy to get
their satisfiability using their relations.

There are two reasons that make Substitution and Linear
efficient in solving path constraints.

1. SMT solvers are integrated as external tools. The calling
time for SMT solvers can be long if SMT solvers are called too
many times. Substitution and Linear can be implemented
inside these tools and the calling time can be saved.

2. Substitution and Linear are more targeted.
MSS pattern and LocalFrame algorithm: Let fc be the

function from which the constraint c is extracted. To verify
if c is of pattern MSS, we should check if c satisfies the
following requirements.

1. |SymV ar(c)| > 1
2. ∀v ∈ SymV ar(c),
v /∈ Global ∧ v /∈ Paramfc ∧ v /∈ Retfc
LocalFrame is used to solve constraints of pattern MSS.

If the pattern of C is MSS, SMT solvers should be used
with some optimizations. If the function f is being analyzed,
the pattern of C is MSS if there is no symbolic value that
belongs to global variables, parameters of f and variables
that are assigned returned values in f . In this case, we can
use only constraints in f to determine the satisfiability of all
the constraints. It is obvious that if we drop some constraints
which are not in f , we can speed up SMT solvers.

MSM pattern and FullPath algorithm: Constraints of the
pattern MSM should satisfy the following two properties.

1. |SymV ar(c)| > 1
2. ∃v ∈ SymV ar(c),

TABLE II
THE NUMBER OF CONSTRAINTS FOR DIFFERENT PATTERNS.

Program SSE SSI MSS MSM Total

array1 8510 0 0 0 8510
array2 9982 0 0 0 9982
unreach1 4655 1460 2308 0 8423
unreach2 5457 1603 1188 0 8248
point1 2462 64 0 0 2526
point2 12446 0 0 0 12446
driver1 376 1 0 0 377
driver2 517 0 0 0 517
main1 4557 808 270 128 5763
main2 3560 11149 50 0 14759
grep 16812 2266 3951 49 23078
gzip 5667 1450 1829 54 9000
searcher 7806 2170 47 0 10023
vim 306424 37038 46116 1188 390766
Total 389231 58009 55759 1419 504418
Proportion 77.17% 11.50% 11.05% 0.28% 100%

v ∈ Global ∨ v ∈ Paramfc ∨ v ∈ Retfc
FullPath is chosen if we can not use any other algorithm

or even adapt some optimizations. We have to collect all path
constraints and use an SMT solver to get their satisfiability.

Note that PR is the priority function and PR(SSE) = 1,
PR(SSI) = 2, PR(MSS) = 3, PR(MSM) = 4.

2) Empirical Study: To state the reasonableness of the four
patterns, some benchmarks and real-world applications were
analyzed and the number of constraints for each pattern is
recorded. We select ten programs from five directories of sv-
benchmarks (The benchmark of SV-COMP) randomly and
each directory contributes two programs. They have 233K
lines of C code in total. For real-world applications, we choose
grep, gzip, the silver searcher, and vim.

The results are shown in Table II. The first column shows
the programs and the next four columns present the number
of constraints for each pattern. The last column is the total
number of constraints that appear in the program. As we can
see, 77.17% of all the constraints in these programs are of
pattern SSE. SSI(11.5%) and MSS(11.05%) also occupy a
large proportion. Only 0.28% of all the constraints have pattern
MSM. The results prove the reasonableness of the four patterns
and mean that most of the constraints can be solved by easier
ways. Thus our CSE is worth being applied.

B. Constraint Solving Engine

We implement the four algorithms in our CSE which is used
in Analyzer to solve path constraints and show how our CSE
applies the algorithms based on constraint-patterns. TsmartLW
can perform a static analysis on C programs. Source files of
the program to be analyzed are transformed to CFA first. Then
the analysis process begins and our CSE is used to replace
SMT solvers. During the analysis process, the engine predicts
the most suitable strategy first based on statistics. Then the
strategy is applied to solve path constraints.

Algorithm 1 shows how our CSE applies the algorithms.
Source files are transformed to CFA. The predict function

927

ST is used to predict the most suitable transfer function f
and initial constraint solving algorithm a. During the analysis
process, if we meet an assumption edge, we can get a new
constraint c. c is added to path constraints C and its pattern
is used to update the current pattern and algorithm. Then the
updated algorithm is used to check the satisfiability of C. If
the constraints are unsatisfiable, the path is dropped. More
details about the transfer function and predict function are
listed below.

Algorithm 1 Apply constraint solving algorithms
1: procedure APPLY ALGORITHMS
2: CFA← source files
3: f, a← ST (CFA)
4: while analysis process continues do
5: e ∈ CFA is being analyzed
6: if e is an AssumptionEdge then
7: c← get constraint from e
8: add(C, c)
9: p′ ← PA(c)

10: if 〈p, a〉, PA(c), 〈p′, a′〉 ∈ f then
11: 〈p, a〉 ← 〈p′, a′〉
12: a→ satisfiability checking
13: end if
14: if C → unsat then
15: current path→ drop
16: end if
17: end if
18: end while
19: end procedure

1) Transfer Function: f belongs to transfer function set
T . For each ∈ T , assigns each tuple 〈p, a〉 a new
tuple 〈p′, a′〉 and each transfer is labeled with PA(c). PA
can get the pattern of a constraint or a set of constraints
and c is a constraint. If (〈p, a〉, PA(c), 〈p′, a′〉) ∈ , the

relation is denoted as 〈p, a〉 PA(c)
 〈p′, a′〉. The relation means

PA(c) = p′ and the current pattern and algorithm are changed
to p′ and a′.

We implement two transfer functions single and
 standard in our tool. single means we should use just one
constraint solving algorithm during the analysis process while
 standard means we should adjust the constraint solving
algorithm according to the pattern of current path constraints.

If single is chosen, we should use just one constraint
solving algorithm during the analysis process. Suppose a is
the initial algorithm, it should be used until the analysis
process ends. We may treat unreachable paths as reachable
and we may get some false positives because a can not
solve constraints whose pattern’s priority is higher than a’
corresponding pattern’s priority. To solve this problem, we can
mark all the errors and collect their path constraints. Then false
positives can be filtered using SMT solvers at the end of the
analysis process.

If standard is chosen, we should use different algorithms
for different path constraints based on their patterns. Thus we
can always get the right answer and we do not need to filter
false positives at the end of the analysis process. The workflow
of standard method is presented in Figure. 4.

P = SSE Push P
then P=SSE

Enter new
function?

yesAssume
Edge?

FuncCall
Edge?

FuncRet
Edge?

P = Pop

no

analyzing

Begin

T = edge
pattern

yes

Update P
using T

Apply
algorithm

yes

Unsat?

no

Drop Path

yes

Stack
Empty?

End

yes

Fig. 4. How the pattern changes along the path.

We enter main function and set the pattern P of current path
constraints to SSE. For each path, these steps are performed.
• The analysis process continues until we meet a function

return edge, an assumption edge or a function call edge.
• If we meet a function call edge, it means that we enter a

new function. So we store the current P and reset P to
SSE. Then we goto the first step.

• If an assumption edge is met, we can get a constraint from
the edge and we add the constraint to path constraints.
If the constraint’s pattern is T . We use T to update P .
The algorithm should also be updated. After adding the
constraint, if the new path constraints are unsatisfiable,
we drop this path. Otherwise, we goto the first step.

• If a function return edge is met, it means that we leave
the current function. We restore P from stack and goto
the first step.

• The analysis process of current path ends as soon as the
return edge of main is met.

2) Predict Function: The function ST in Algorithm 1
determines which transfer function should be used and ST ⊆
CFA × T . Before the analysis process begins, we do not
know which function is the most suitable. Since constraints
can only be produced in the analysis process, we can not make
a decision using constraints. Thus we propose a strategy to
predict the most suitable function based on CFA and statistics.
Machine learning techniques are promising in predicting and
these techniques can also be applied. After we get the most
suitable transfer function, we can use it in the analysis process.

In our implementation, we use a simple method to predict
the most suitable transfer function. We analyze many programs
first and collect data that can influence our choice as statistics.
Based on statistics, when analyzing new programs, we can
predict the most suitable function.

928

To get statistics, we should analyze lots of programs first
and record the number of each kind of constraint(Equal,
Less, LessOrEqual) for different patterns (SSE, SSI, MSS,
MSM). For example, the number of equal constraints that has
SSE pattern is Esse, the number of other three patterns are
Essi, Emss and Emsm. For less constraints, the numbers are
Lsse, Lssi... and for LessOrEqual constraints, the numbers are
LEsse, LEssi... The data is treated as statistics for further use.

When a new program is analyzed, we can choose transfer
function based on CFA and statistics. For equal constraints, if
we get Esse, Essi, Emss, Emsm, then we believe that a new
equal constraint has a possibility of

Pequal(SSE) =
Esse

Esse + Essi + Emss + Emsm
(1)

to has pattern SSE. The possibility of other patterns are also
calculated in that way. The general formula is

P∗(PType) =
∗PType

∗sse + ∗ssi + ∗mss + ∗msm
(2)

* is the type of constraints (Equal, Less, LessOrEqual) while
PType is a kind of pattern. For constraint of type *, we can
use formula(2) to get its possibility to has pattern PType.

Scores SSEScore, SSIScore, MSSScore, MSMScore
corresponding to the four patterns are defined. We should
traverse the program’s CFA first. If an AssumptionEdge
is met, we identify its type (equal, less, LessOrEqual).
If its type is equal. Then the edge has a probability of
Pequal(SSE) to has pattern SSE. Thus we believe that this
edge increases SSEScore by Pequal(SSE). Pless(SSE) and
PlessORequal(SSE) do the same. So we can use (3) to get
SSEScore.

SSEScore =
CFA∑

e=AssumptionEdge

Ptype(e)(SSE) (3)

Others are calculated the same way. The general formula is

PTypeScore =
CFA∑

e=AssumptionEdge

Ptype(e)(PType)(4)

PType denotes the pattern which you want to get its score.
We normalize the scores first and set four bounds empiri-

cally. Then the most suitable function = ST (S) is defined
below. Note that if single is chosen, the initial algorithm is
determined by the pattern whose score crosses the threshold.
Otherwise, we use Substitution as the initial algorithm.

ST(S) =

{
 single, if one score crosses threshold
 standard, otherwise

IV. EXPERIMENTAL RESULTS

In this section, the benchmarks and the real-world appli-
cations mentioned in section III.A are analyzed by TsmartL-
W and CPAchecker and the results are compared in Table
III and Table IV. TsmartLW and CPAchecker are used to
perform an inter-procedural analysis on benchmarks and an
intra-procedural analysis on real-world applications. During

the analysis process, TsmartLW uses our CSE to solve path
constraints while CPAchecker uses SMT solvers. The time
used for satisfiability checking and the total execution time
of TsmartLW and CPAchecker are recorded.

Table III shows the time used for satisfiability checking of
the two tools. Column M5 means CPAchecker uses MathSAT5
to solve path constraints and Z3 means CPAchecker uses Z3
solver. In the third to the ninth columns, TsmartLW is used
to analyze the program and our CSE is applied to solve path
constraints. Substitution, Linear, LocalFrame(M5) and Local-
Frame(Z3) mean single is applied and the initial constraint
solving algorithm is Substitution, Linear, LocalFrame with
MathSAT5 (LocalFrame and Standard need SMT solvers) and
LocalFrame with Z3. Standard(M5) and Standard(Z3) mean
 standard is used and MathSAT5 and Z3 are chosen. In the
last column, we use our CSE to predict transfer function first
and then apply the function in the analysis process. As we
can see, Substitution, Linear and Standard(Z3) need the least
time for satisfiability checking. On average, our CSE is 368.8x
faster than SMT solvers. For example, Z3 needs 1688.4s for
vim and our CSE costs only 3.1s. There are two reasons that
make our CSE more efficient than SMT solvers in solving path
constraints. The four algorithms in CSE are more targeted.
Besides, SMT solvers are usually integrated as external tools.
The calling time for SMT solvers can be very long if SMT
solvers are called many times. CSE can be implemented inside
these tools and the calling time can be saved.

Table IV shows the execution time of the two tools.
TsmartLW using Substitution, Linear or Standard(Z3) has
the least execution time and CPAchecker needs much more
time for most programs except program main1(we do not
lose much). On average, TsmartLW is 1.3167x faster than
CPAchecker. For example, CPAchecker needs 7938s to an-
alyze vim and TsmartLW only costs 3557.5s. TsmartLW is
faster because it saves much time in satisfiability checking.
Moreover, our CSE can always predict the best or near best
strategies (transfer function and initial algorithm).

V. CONCLUSION

This paper proposes TsmartLW, an optimized static anal-
ysis tool. TsmartLW can perform inter-procedural or intra-
procedural analysis on programs to find divide-by-zero errors.
During the analysis process, our CSE is applied for satisfi-
ability checking. TsmartLW is compared with CPAchecker,
a state-of-the-art static analysis tool. We use the two tools
to perform an inter-procedural analysis on benchmarks and
an intra-procedural analysis on real-world applications. The
results reveal that TsmartLW is faster than CPAchecker.

ACKNOWLEDGMENT

This research is sponsored in part by NSFC Program (No.
91218302, No. 61527812, 61402248), National Science and
Technology Major Project (No. 2016ZX01038101), MIIT IT
funds (Research and application of TCN key technologies) of
China, and The National Key Technology R&D Program (No.
2015BAG14B01-02).

The authors would like to thank Zuxing Gu for his advice.

929

TABLE III
THE TIME USED FOR SATISFIABILITY CHECKING BY CPACHECKER AND TSMARTLW.

Program M5 Z3 Substitution Linear LocalFrame(M5) LocalFrame(Z3) Standard(M5) Standard(Z3) Predict

array1 83.1s 42.9s 129ms 164ms 63.7s 61.4s 227ms 189ms 129ms
array2 93.5s 53.3s 151ms 167ms 73.7s 77.3s 256ms 199ms 151ms
unreach1 130.7s 62.6s 153ms 188ms 78.2s 75.9s 73.5s 56.4s 153ms
unreach2 132.7s 55.8s 149ms 179ms 105.4s 81.6s 84.6s 50.3s 179ms
point1 10.9s 10.3s 81ms 74ms 10.4s 15.9s 142ms 100ms 81ms
point2 119.2s 68.6s 234ms 192ms 123.6s 96.8s 263ms 192ms 192ms
driver1 11.4s 4.4s 25ms 26ms 4.5s 4.4s 41ms 30ms 25ms
driver2 492.3s 88.8s 66ms 64ms 513.4s 113.0s 116ms 99ms 66ms
main1 49.9s 40.6s 187ms 199ms 120.1s 120.8s 10.0s 8.6s 187ms
main2 OOM1 103.6 229ms 214ms 220.4s 133.4s 1.1s 0.9s 229ms
grep 44.3s 22.7s 435ms 205ms -2 - 49.4s 40.2s 205ms
gzip 22.2s 17.6s 172ms 131ms - - 9.8s 12.9s 131ms
seracher 7.8s 8.0s 52ms 82ms - - 1.2s 1.7s 82ms
vim OOM 1688.4s 3.2s 3.1s - - 788.6s 685.3s 3.1s
1 OOM means out of memory.
2 An intra-procedural analysis is performed on real-world applications and there is no need to apply algorithm LocalFrame.
3 We set four bounds 0.7, 0.2, 0.3, 0.1 for SSE, SSI, MSS, MSM as we have said in the last paragraph of III.C.a and they are used for

prediction.

TABLE IV
THE EXECUTION TIME OF CPACHECKER AND TSMARTLW (SECONDS).

Program M5 Z3 Substitution Linear LocalFrame(M5) LocalFrame(Z3) Standard(M5) Standard(Z3) Predict

array1 184.9 119.7 54.2 52.8 141.9 133.2 66.5 53.8 54.2
array2 184.8 136.0 55.6 55.2 157.1 155.7 67.7 56.0 55.6
unreach1 517.8 460.8 553.6 546.0 458.1 429.3 504.3 428.6 553.6
unreach2 336.9 248.8 186.3 187.6 307.1 275.8 306.3 246.0 187.6
point1 295.3 304.1 281.3 271.1 291.7 287.9 323.1 270.4 281.3
point2 1125.6 1097.2 880.0 870.3 1225.9 1025.1 998.6 853.0 870.3
driver1 138.7 133.5 120.0 127.1 158.6 134.2 155.6 126.1 120.0
driver2 526.7 124.0 34.6 33.1 561.9 154.9 43.6 36.0 34.6
main1 150.2 121.8 136.6 138.7 296.2 266.6 176.2 147.2 136.6
main2 OOM 237.4 153.9 150.8 415.2 284.2 185.0 158.7 153.9
grep 527.5 297.9 124.9 125.1 - - 185.8 175.6 125.1
gzip 82.3 76.8 57.0 55.5 - - 69.3 68.1 55.5
seracher 48.6 48.2 42.8 42.5 - - 43.9 40.2 42.5
vim OOM 7938.0 3580.6 3557.5 - - 6440.8 6743.5 3557.5
1 The time used for verifying marked errors generated by applying single algorithms is included in execution time.

REFERENCES

[1] Dirk Beyer, Thomas A Henzinger, and Grégory Théoduloz. Configurable
software verification: Concretizing the convergence of model checking
and program analysis. In International Conference on Computer Aided
Verification, pages 504–518. Springer, 2007.

[2] Brian Chess and Gary McGraw. Static analysis for security. IEEE
Security & Privacy, 2(6):76–79, 2004.

[3] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. Smt-based
bounded model checking for embedded ansi-c software. IEEE Transac-
tions on Software Engineering, 38(4):957–974, 2012.

[4] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-
Tsai Lee, and Sy-Yen Kuo. Securing web application code by static
analysis and runtime protection. In Proceedings of the 13th international
conference on World Wide Web, pages 40–52. ACM, 2004.

[5] Yu Jiang, Han Liu, Hui Kong, Rui Wang, Mohammad Hosseini, Jiaguang
Sun, and Lui Sha. Use runtime verification to improve the quality of
medical care practice. In 2016 38th ACM International Conference on
Software Engineering(ICSE). ACM, 2016.

[6] Yu Jiang, Houbing Song, Rui Wang, Ming Gu, Jiaguang Sun, and
Lui Sha. Data-centered runtime verification of wireless medical cyber-
physical system. IEEE Transactions on Industrial Informatics, 2016.

[7] Yu Jiang, Yixiao Yang, Han Liu, Hui Kong, Ming Gu, Jiaguang Sun,
and Lui Sha. From stateflow simulation to verified implementation:
A verification approach and a real-time train controller design. In
2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–11. IEEE, 2016.

[8] Yu Jiang, Hehua Zhang, Zonghui Li, Yangdong Deng, Xiaoyu Song,
Ming Gu, and Jiaguang Sun. Design and optimization of multiclocked
embedded systems using formal techniques. IEEE transactions on
industrial electronics, 62(2):1270–1278, 2015.

[9] Yu Jiang, Hehua Zhang, Huafeng Zhang, Han Liu, Xiaoyu Song, Ming
Gu, and Jiaguang Sun. Design of mixed synchronous/asynchronous
systems with multiple clocks. IEEE Transactions on Parallel and
Distributed Systems, 26(8):2220–2232, 2015.

[10] Maximilian Junker, Ralf Huuck, Ansgar Fehnker, and Alexander Knapp.
Smt-based false positive elimination in static program analysis. In
International Conference on Formal Engineering Methods, pages 316–
331. Springer, 2012.

[11] Youil Kim, Jooyong Lee, Hwansoo Han, and Kwang-Moo Choe.
Filtering false alarms of buffer overflow analysis using smt solvers.
Information and Software Technology, 52(2):210–219, 2010.

[12] Daniel Kroening and Michael Tautschnig. Cbmc–c bounded model
checker. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 389–391. Springer, 2014.

[13] Kostyantyn Vorobyov and Padmanabhan Krishnan. Comparing model
checking and static program analysis: A case study in error detection
approaches. Proceedings of SSV, 2010.

[14] Min Zhou, Fei He, Xiaoyu Song, Shi He, Gangyi Chen, and Ming Gu.
Estimating the volume of solution space for satisfiability modulo linear
real arithmetic. Theory of Computing Systems, 56(2):347–371, 2015.

[15] Min Zhou, Fei He, Bow-Yaw Wang, Ming Gu, and Jiaguang Sun. Array
theory of bounded elements and its applications. Journal of automated
reasoning, 52(4):379–405, 2014.

930

