
Verifying Simulink Stateflow Model: Timed Automata
Approach

Yixiao Yang1, Yu Jiang1,2, Ming Gu1, Jiaguang Sun1

School of Software, Tsinghua University, TNLIST, KLISS, Beijing, China1

Department of Computer Science, University of Illinois at Urbana-Champaign, USA2

ABSTRACT
Simulink Stateflow is widely used for the model-driven devel-
opment of software. However, the increasing demand of rig-
orous verification for safety critical applications brings new
challenge to the Simulink Stateflow because of the lack of
formal semantics. In this paper, we present STU, a self-
contained toolkit to bridge the Simulink Stateflow and a
well-defined rigorous verification. The tool translates the
Simulink Stateflow into the Uppaal timed automata for ver-
ification. Compared to existing work, more advanced and
complex modeling features in Stateflow such as the event
stack, conditional action and timer are supported. Then,
with the strong verification power of Uppaal, we can not only
find design defects that are missed by the Simulink Design
Verifier, but also check more important temporal properties.
The evaluation on artificial examples and real industrial ap-
plications demonstrates the effectiveness.

The abstract demo video address is :
https://youtu.be/TmsU1WRwSqo

The tool and code can be downloaded:

https://www.dropbox.com/sh/374gcfjfei4ywlt/AACF9xqijvY-8nteIhcShIy9a?dl=

0

CCS Concepts
•Software and its engineering → Model-driven soft-
ware engineering;

Keywords
Simulink Stateflow, Uppaal Timed Automaton, Verification

1. INTRODUCTION
Simulink Stateflow is widely used for the model driven de-

sign of software systems, which provides well support for the
graphical Stateflow model construction, interactive graphi-
cal model simulation, some basic design validation, and the
C, C++, and VHDL code generations [3]. It has been suc-

cessfully applied to various industry and livelihood areas,
where Simulink Design Verifier [10] are taking the responsi-
bility to uncover design defects of the Stateflow model.
Motivation: However, for those safety-critical applications
such as medical devices and avionics, the model validation
technique used in Simulink Design Verifier is still insufficient
to ensure the correctness. Specifically, the verification capa-
bility of Simulink Design Verifier is limited to basic proper-
ties. It detects errors in the model that result in the integer
overflow, array access violations, division by zero, and vio-
lation of requirement assertions described by Simulink veri-
fication block. Handling complex temporal properties (e.g.
something has to hold at the next state) of those applica-
tions is currently infeasible because of the limited descrip-
tive ability of Simulink verification block. More rigorous
formal techniques such as model checking should be applied
to check the correctness of the Stateflow model.
Challenge: The major challenge for applying those formal
verification techniques to support a wider range of properties
is that the execution semantics of Stateflow is too complex,
which is described in a 1366 pages user guide informally [12].
Advanced modeling feature such as event stack, event inter-
ruption, complex state activating and deactivating mecha-
nism, boundary transition, and transitional action etc., are
non-straightforward to formalize for verification. Although
there are some existing works on translation based verifi-
cation of Stateflow model, most are efficient and work well
covering the most related modeling features within their own
domains [4], and few address the temporal part and complex
event interrupt mechanism, which are hard to formalize but
really important in real model of applications.
Approach: We present STU, to automatically translate the
Simulink Stateflow model into the Uppaal timed automata
[1, 13] for a more comprehensive formal analysis. Timed
automata is chosen because it can be used to model and
analyze the timing behavior of systems, and methods for
checking both safety and liveness properties of timed au-
tomata have been well developed and intensively studied in
Uppaal. The advanced Stateflow modeling features (Com-
posite State, Boundary Transition, Junction, Event, Condi-
tional Action, Transitional Action, Timer and implicit event
stack) are addressed in the tool. With a wider coverage of
Stateflow modeling features captured in STU, and the strong
verification capability of Uppaal, more comprehensive vali-
dation can be accomplished. Potential errors contained in
the Stateflow that are missed in simulation or Simulink De-
sign Verifier verification will be detected through Uppaal
verification.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970293

852

2. BACKGROUND

2.1 Simulink Stateflow
The model in Fig. 1 is an example of a Simulink State-

flow diagram which covers most advanced modeling features.
The model realizes a counter task that, for every 2 seconds,
state A dispatches a ‘switch on’ event, and for every ‘switch
on’ event, state B will increase the variable x by 1. The
statement x = x + 1 is a conditional action, so it will
be executed immediately when the event ‘switch on’ is dis-
patched. On the other hand, the statement y = y + 1
is a transitional action which can only be executed when a
valid path between two states is detected. So at the end of
execution, the value of y is only increased for one time to
1 and the value of x is 3. At the same time, the boolean
variable result is set to be true, because the activation of
state B2 will trigger the activation of parent state Count
first. During the activation of state Count, the entry action
result = true is executed.

[after(2,sec)]/{switch_on} Switch_on{x=x+1;}/{y=y+1;}

[x>=3]

[y>=3]

[result]

Count
entry:result=true

Container
entry:x=int32(0);y=int32(0);CLK=int32(0);result=false;
during:CLK=CLK+1;

A

C

A1 A2

C1 C2

B

B1 B3

B2

Figure 1: A Stateflow example for counter task
which covers most advanced modeling features.

More specifically, Stateflow model is an extended hierar-
chical state machine which contains sequential decision logic
and synchronization events to represent system behaviors.
There are mainly six frequently-used modeling elements:
State, Transition, Junction, event, Action and Timer.
State: It represents operating mode of the system. The
occurrence of an event will trigger the execution of State-
flow model by making states active or inactive depending
on conditions during simulation. The state can be defined
hierarchically, and may contain two types of decomposition
which are connected in parallel or serial. The serial decom-
posing state must have at least one default transition with
only one sub-state activated, while the parallel decomposing
state does not have any default transition with all sub-states
activated at one time. That is speaking, within a compos-
ite state (or a chart), no two exclusive serial sub-states can
be active at the same time, while any number of parallel
sub-states can be simultaneously activated.
Transition: It is the edge between two states or junctions,
representing the mode change from the source state to the
destination state. Each transition is attached with four char-
acterizations:

[event] [condition] [conditional action] / [common action]

Where event specifies explicit or implicit signal that trig-
gers execution of transition, condition is a boolean expres-
sion that allows the transition to be taken with value true,
the conditional action is the operation that is immediately
executed when the condition is met, and common action
is the operation that will be executed when the condition
is met and there is a non-interrupted valid path between
source state and target state. Each transition also has an

implicit priority of execution, determined by the information
such as hierarchy level of destination state, and position of
transition source, etc.
Event: There are two types of event used to trigger execu-
tion of a Stateflow diagram. An explicit event is defined by
users, and it can be an input from Simulink, an output to
Simulink, or local within a diagram. An implicit event is a
built-in event that broadcasts automatically during diagram
execution. Three commonly used implicit events are sys-
tem tick, enter(state name), and exit(state name): tick in-
dicates the moment when a Stateflow diagram awakens, and
the other two occur when the specified state of state name
is entered or exited, respectively. Event broadcasting is a
common communication technique in Stateflow.
Action: It contains two kinds of operation attached on tran-
sition (conditional action and common action), and three
kinds of operations attached on state (entry action, during
action and exit action). Entry action is executed when the
state is activated, During action is executed when the state
is already active and stays in, and Exit action is executed
when the state changes from active to inactive.
Junction: It contains two types, connective junction and
history junction, where the former enables the representa-
tion of different possible transition paths for a single transi-
tion, and the later represents historical decision points based
on historical data relative to state activity.
Timer: It is used to specify time related behaviors of sys-
tem, which is characterized as:

[TmOp (Num,Event)]

where TmOp contains three types of time related operation
before, after, and at, Num is the number used to quantify
the length of time period, and Event consists of three system
reserved keywords: sec, msec, and usec which represents
second, millisecond, and microseconds, respectively.

2.2 Uppaal Timed Automata
The model in Fig. 2 is an example of a network of timed

automata which covers most advanced modelling features.
The model consists of three parallel automata A, B and C.
A channel switch on is declared for synchronisation among
different automata, and a clock variable t is declared in
timed automaton A for time modelling. Every two time
units, the action switch on! is synchronized with the action
switch on?, and the variable x will increase by 1 in automa-
ton B. If the value of x and y is smaller than 3, automaton B
will return to state B1 immediately for next synchronization
from automaton A. After six time units, the transition from
state B4 to B2 in automaton B would be triggered, and the
value of variable result should be set to be true, which would
immediately trigger the transition from C1 to C2 contained
in automaton C. Note that the state with the double cycle
is the initial state.

Formally, a timed automaton is a finite state machine ex-
tended with clock variables. It uses a dense-time model

/switch_on?/x:=x+1

y>=3/ /y:=y+1

A
A1 A2

B

B1 B3

B2

t>=2/ switch_on!/t:=0

t<=2

x>=3/ /y:=y+1, result:=true x<3,y<3/ /
result==true / /

C
C1 C2

B4

Timed automata

Figure 2: Constructed timed automata for counter.

853

where clock variables evaluate to real numbers, and all clocks
progress synchronously. It can be defined as a tuple consists
of six elements: (L, l0, C,A, I, E), where L is a set of lo-
cations, l0 is the initial location, C is a set of clocks, A is
a set of actions, B(C) is a set of conjunctions over simple
conditions of the form x ./ c or x − y ./ c (x, y ∈ C, and
./∈ {<,≤,=,≥, >}), I is a set of invariants on the location,
and E ⊆ L×A×B(C)× 2C ×L denotes a set of transition
edges. The edge connects two locations with an action, a

guard and a set of clocks, formalized as (l −−−→g, a, r l
′
) when

(l, a, g, r, l
′
) ∈ E. The transition represented by an edge can

be triggered when the clock value satisfies the guard labeled
on the edge. The clocks may reset when a transition is taken.

A system can be modeled as a network of timed automata
in parallel with synchronous actions defined on channel ch.
The input action ch? represents receiving an event from the
channel ch, while the output action ch! stands for sending an
event on the channel ch. Automata in the network execute
concurrently. They can communicate via shared variables,
as well as via events over those synchronous channels. In
the general case, an edge from location l1 to location l2 can

be described in a form (l1
−−−→
g, φ, r l

′
), if there is no syn-

chronization over channels (φ denotes an “empty” action),

or (l1
−−−−−→
g, ch∗, r l

′
). Here, ch∗ denotes a synchronization

label over channel ch with ∗ ∈ {!, ?}, g represents a guard
for the edge and r denotes the reset operations performed
when the transition occurs.

3. MODEL TRANSFORMATION
The key challenges ot the semantics gap between Simulink

Stateflow and Uppaal timed automata are :

(1) Simulink Stateflow transition is driven by event, and
the execution order of every step of event is in deter-
ministic sequential manner, interruptible and recursive
with stack. While the Uppaal timed automata is exe-
cuted in parallel, and driven by the channel synchro-
nization without the support of stack.

(2) Simulink Stateflow supports hierarchy structure which
is combined with recursive activation-deactivation mech-
anism, the transitional and conditional actions very
closely. While the Uppaal timed automata supports
single state and non-interrupt transition and action.

Since the semantics of timed automata is simpler than that
of Stateflow, we need to deal with the priority, event stack,
transitional action, etc. with some simple constructs in Up-
paal timed automata, which is highly challenging than the
reverse translation from timed automata to Stateflow [9].
To simulate the complex model and execution semantics of
Simulink Stateflow, an array based data structure for event
and an entirely new cooperative mechanism are designed
and introduced.

3.1 Dynamic Event Stack Construction
In Stateflow, the event dispatching and processing mecha-

nism is interruptible. However, in timed automata, there is
only synchronous channel among parallel automata and no
stack at all. The key idea to simulate Stateflow event stack
mechanism is to build a virtual stack in Uppaal. We use a
structured array in Uppaal to build the event virtual stack.
The element of the array is a data structure defined in the
listing 1 below, which records all information related to an
event in Stateflow. Each element in the structure node is
described as:

Listing 1: The Definition of the Event Structure

Structure Event {
int Event ;
int Dest ;
int DestCrossPos i t ion ;
int AutomatonType ;
bool Val id ;

}

1. Event is the variable used to label and distinguish dif-
ferent events in Stateflow. We assign a unique integer
number to this variable for each Stateflow event.

2. Dest is the variable used to map a Stateflow event
to a corresponding Uppaal controller automata orig-
inated from a Stateflow state with decomposition or
attached actions. This kind of state will be trans-
lated into four cooperative automata (controller, ac-
tion, condition and common automata).

3. DestCrossPosition is the variable used to imply the
corresponding Uppaal controller automata state orig-
inated from Stateflow cross-boundary transition.

4. AutomatonType is the variable used to map the event
to the four types of corresponding Uppaal automata.

5. Valid is the variable used to denote whether this event
is valid or not at present. If the event is on the top
of the stack and is invalid, the event will be deleted
by the extra daemon automata, which is responsible
for deleting invalid event on the top of the stack, and
dispatching the System Event when the stack is empty.

The virtual stack is the basic element to simulate Simulink
Stateflow semantics. It is initialized as empty in the trans-
lated Uppaal timed automata, and is dynamically pushed
and popped during runtime simulation. When Simulink
Stateflow generates an event within a transition or a state
operation, the translated Uppaal timed automata will take
a corresponding transition with an attached action to dis-
patch and push an Event element into the stack dynami-
cally. Each transition starting from an active state of con-
troller automata will check whether the Dest of the top ele-
ment of event stack equals to the label of automata or not.
If yes, the transition will be triggered, and the Event el-
ement will also be popped corresponding to the end of a
simulation cycle of Simulink Stateflow. The procedures are
mainly accomplished through five encoded functions Dis-
patchEvent(), PushEvent(), PopEvent(), EventSentToMe(),
and StackTopEvent() of timed automata.

3.2 State Transformation
For a regular simple state without decomposition or at-

tached actions, the transformation is straightforward. We
just directly map simple Stateflow state sf to Uppaal timed
automata state su. But for those complex Stateflow state
with decomposition or attached actions, we need to translate
it to four cooperative parallel automata:

1. Controller automata is used to simulate the event pro-
cessing mechanism within this complex Stateflow state.
It controls how to dispatch the hierarchical active and
deactive related event by initializing, popping, and
pushing elements of the virtual stack.

854

2. Action automata is responsible for handling the three
kinds of attached actions (entry, during, exit). For
the composite state without attached actions, this au-
tomata will not be generated.

3. Condition automata is used to execute the conditional
action, handle the junction, test the guard and priority
on each transition contained in this composite state,
and store the boolean results.

4. Common automata is used to execute the transitional
action, and read the guard related array initialized by
condition automata to execute the satisfied transition
contained in this composite state.

Controller automata: For the activation of state sf in
Stateflow, it should estimate whether its upper-level state
slf is activated or not. If not, slf should be activated first,
this is especially true for cross-boundary transitions. In or-
der to simulate this semantics, the corresponding controller
automata should push an activation event corresponding to
state sf itself onto the stack first, and recursively pushe the
activation event associated with the automata originated
from slf onto the stack, until the top composite state ar-
rives. The deactivation of Stateflow state, is a reversal of ac-
tivation procedure. In controller automata, these two tasks
are translated to two self-cycle transitions attached with ac-
tions StateActivationLogic() and StateDeactivationLogic() of
timed automata.
Action automata: For detail execution of entry, during,
and exit action attached on Stateflow state, it will be cap-
tured by the translated action automata with three self-cycle
transitions. After the execution of controller automata on
the logic of state active or deactivate, action automata will
continually read the stack top event for the test of the guard.
The guard on the three transitions are StackTop().Event ==
ActivationEvent, StackTop().Event == DuringEvent and
StackTop().Event == DeactivationEvent. Then, the transi-
tion with satisfied guard will take, and corresponding action
statements in Stateflow are translated to action statements
attached on the three transitions.

An example for the translated controller automata and ac-
tion automata for a composite state A is presented in Figure
3. For condition automata and common automata, they are
mainly used for Stateflow transitions contained in composite
state, and will be described in the following paragraph.

3.3 Transition Transformation
Within Stateflow, each transition is attached with four

characterizations: event, condition, conditional action, and

Condition
Automaton
for A

Common
Automaton
for A

Controller
Automaton
for A

Action
Automaton
for A

Figure 3: The controller and action automata for
a composite state transformation, capturing activa-
tion and deactivation.

transitional action. We incorporate them into the condition
and common automata of the high-level composite state that
contains this transition as below.

1. event is transformed into a unique integer as described
in the event stack transformation.

2. condition is transformed into the guard of transition
in the corresponding condition automata.

3. conditional action is transformed into the action of
transition in the corresponding condition automata.

4. transitional action is transformed into the action of
transition in the corresponding common automata.

When there are multiple transitions starting from a State-
flow state, we should maintain the determinism execution se-
quence of Stateflow in timed automata. First, we initialize
an int array PathSelect[] to store the priority of transition,
where the array index represents the depth of source state
or junction node of transition. As presented in Figure 4,
the depth of state or junction is defined as the minimum
transition number to a pre-state. Besides, a boolean array
PathGuard[] is initialized to store the condition test result
of every transition, where the array index is the id of State-
flow transition.

Condition
Automaton

Common
Automaton

Figure 4: The common and condition automata for
a composite state transformation, capturing internal
transition.

Condition automata:For a Stateflow transition tf1 : sf1 →
sf2 with conditional action afc and condition gf , we build
condition automata as below. An intermediate state sui is
added between the corresponding timed automata state su1
and su2 . Based on which, three automata transitions are
defined, tu1 : su1 → sui , tu2 : sui → su2 and tu3 : sui → su1 .
The guard on transition tu1 is PathSelect[i] == Priority,
which ensures that the transition is executed by its prior-
ity order. The guard on transition tu2 is the condition gf

from Stateflow transition tf1 . The action on transition tu2
is from conditional action afc of the Stateflow transition tf1 ,
and an additional assignment of the boolean array element
PathJudge[i] with value true. In this way, conditional ac-
tion can be executed immediately whether there is a legal
transition path between two Stateflow states or not. Tran-
sition tu3 is used to roll back to the source state for further
test of transitions with lower property, and PathGuard[i] is
set as false to show that this transition could not be taken
in common automata. Also, if sf2 is a Stateflow junction
node, a transition is added tu4 : su2 → su1 for roll back of non-
complete path. This roll back transition is controlled by the
guard pathSelect[i] == n, where i is the depth of the junc-
tion node, n is the number of outgoing transitions from the

855

junction, and each negative test of the guard on outgoing
transition will increase the value of pathSelect[i] by 1. The
timer of Stateflow is also captured in condition automata.
Time operation is based on event and is usually used as a
time related condition on transition.
Common automata: For a Stateflow transition tf1 : sf1 →
sf2 , we build common automata to capture its transitional

action aft , based on the array PathGuard[] initialized in con-

dition automata. Stateflow transition tf1 is directly mapped
to an automata transition tu1 : su1 → su2 . The guard and ac-
tion on automata transition tu1 are from the expression Path-
Guard[] == true and transitional action aft respectively. It
is almost the same as the graphical structure of Stateflow
model, with abbreviated guard and transitional action. An
example for the translated common automata and condition
automata of the composite state A is presented in Figure 4.

3.4 Tool Implementation
Based on above transition rules, we implement a tool for

automatically translation from Stateflow to Uppaal timed
automata. The tool STU consists of a parser, transla-
tor, and storer, and is implemented in 14590 lines of java
code with two supporting libraries (JDOM used for read
and write XML file, and Antlr used for abstract syntax tree
construction and update), as presented in Figure 5. The
parser extracts Stateflow model from Simulink project file
into memory. The translator transfers Stateflow model and
reconstructs the abstract syntax tree in memory according
to transition rules. The storer outputs the updated abstract
syntax tree to Uppaal model file. The three parts are seam-
lessly integrated in STU to support the formal analysis of
Stateflow model based on Uppaal, and can be downloaded
in the website presented in abstract.

Simulink
File

JDom

Stateflow
Model

Transfer
Logic

Uppaal
File

Uppaal
Model

Paser

Translator

Storer

JDom

Antrl AntrlAST

Figure 5: Translation tool design and integration.

4. TOOL EVALUATION
In order to evaluate the tool, we apply it to some arti-

ficial and real industrial Stateflow models. The presented
Steteflow models, translated timed automata, and proper-
ties specifications could be downloaded in web-site presented
in footnote 1. Some implicit bugs in Stateflow model that
can not be detected in Design Verifier are detected in Uppaal
verification based on the translated timed automata.

The first artificial example is the switch on counter exam-
ple designed to count how many times the event switch on
happens. As presented in Figure 6, when the Stateflow
model enters the composite state B, there is a potential error
of division by 0 contained in the transitional action z = x/y.
So, we may verify the property non-division by zero in De-
sign Verifier, and the model passes the verification. But
according to manual analysis, the value of y would be zero

after 6 seconds. Design Verifier failed to detect this implicit
but general bug contained in the model.

Potential division by zero

Figure 6: Manual model for validation testing

Then, we translate the Stateflow model to timed automata
through the developed tool STU. The translation is accom-
plished within 0.01 seconds. In the translated timed au-
tomata, the integer variable y in Stateflow is mapped to an
integer variable Chart y, and the junction node in Stateflow
is mapped to a state with the name Process Chart Con-
tainer B.SSID49. Then, property about error of division by
0 within this model can be described as in Table 1.

Table 1: Property List
Formula Time

E<>Process Chart Container B.SSID49
and Chart y == 0 and Chart x == 3

0.43s

Where “E <>” is a temporal keyword which means even-
tually,“Process Chart Container B.SSID49”is automata state
name corresponding to the Stateflow junction node,“Chart x
== 3” is automata value test corresponding to the guard
“x==3” of Stateflow transition from junction node to state
B2, and “Chart y == 0” is also automata value test corre-
sponding to the Stateflow action z = x/y attached on the
transition from junction node to state B2. The property
consists of a serial combination of previous predicates, and
means that y may be set to be 0 when the transition is
enabled, which will cause the error of division by 0. Veri-
fication result shows that the property is satisfied and the
error can be triggered within 0.43 second.

Then, we apply STU to a real industrial Stateflow model
of the train communication control system and do some ver-
ification. The system consists of many multifunction vehicle
bus (MVB) controllers which interconnect devices within a
vehicle, and the rotated MVB master controller broadcasts a
master frame[6, 7, 15]. Given master rotation as an example,
the master transfer logic described in page 260 and Figure
105 of IEC 61375 are modeled as Stateflow model. After
preliminary Stateflow validation on two MVB controller in-
stances, we translate the main logic and some accompanied
Stateflow models into 151 corresponding parallel timed au-
tomata within 0.1 seconds and verify the property described
in table 2 within 3 seconds. This property is derived from
real potential hazards of system failure. For example, in the
MVB master and slave rotation process, there may be in-
consistence such that two masters appear at the same time.

The property is violated during verification, which means
that there exists a path that two MVB controllers may si-
multaneously reach “Regular Master” state, or simultane-
ously reach “Standby Master” state. The first situation will
lead to master collision and the second will lead to no master

856

Table 2: Property List
Formula Time

A[] Process Chart OneMVB1(2) LOGIC
.Chart OneMVB1 LOGIC Rrgular Master

and
Process Chart OneMVB2(1) LOGIC

.Chart OneMVB2 LOGIC Standby Master

2.349s

throughout train communication network. Through manual
analysis of counter examples demonstrated in Uppaal, we
trace back to the design defects of Stateflow model, which
can be further traced back to the bugs in the standard.

Currently, any models that consist of the advanced model-
ing features mentioned in the introduction can be translated
by our tool. Because execution semantics of Stateflow is de-
scribed in informal natural languages based on examples, it
is not possible to formally prove the equivalence and cor-
rectness of the transformation. We acquire correctness by
carefully compare simulation results of the translated model,
including the value and state sequence step by step, in the
same way as previous works.

5. RELATED WORK
Because Stateflow has no formal semantics for rigours for-

mal verification, plenty of attempts have touched the topic
to assist Simulink Design Verifier in acquiring correctness
of Stateflow model, which can be classified into two cate-
gories, simulation-based techniques and verification-based
techniques. Many researchers have developed simulation
based tools for Simulink designs including Beacon Tester
[11], and AutoMOTgen [5] etc. For verification based tech-
niques, the main challenge is that Simulink Stateflow lacks
a formal and rigorous definition of its semantics. Many re-
searchers have defined several types of formal semantics for
Stateflow, and developed many specialized tools for trans-
lating subsets of model to pushdown automata [2], SMV [8],
PAT [4], Hybrid automata, hoare logic and SAL [14], which
can be verified through the corresponding supporting tools.
Most of them performs well within their own domain while
abstracting some domain unrelated modeling features. For
example, in SMV based translation, they focus and provide
a well-defined framework to ensure the function correctness,
while the hierarchical states and events are out of their con-
siderations.

6. CONCLUSION
In this paper, we present a tool for the translation of State-

flow model to timed automata, which covers many advanced
features such as conditional action, activation of composite
state, and timer etc. The translated timed automata model
can be input to Uppaal for simulation and verification di-
rectly. Then, many safety and liveness properties of the
original Stateflow model can be verified by the Uppaal to
acquire higher reliability. The ongoing work mainly focus
on strengthening the useability of STU in the following two
aspects: (1) the conversion of randomized function in State-
flow is not supported yet. (2) the layout of the translated
Uppaal timed automata needs to be improved. (3) the au-
tomatic trace back tool should be developed.

7. ACKNOWLEDGMENT

This research is sponsored in part by NSFC Program (No.
91218302, No. 61527812), National Science and Technology
Major Project (No. 2016ZX01038101), Tsinghua University
Initiative Scientific Research Program (20131089331), MIIT
IT funds (Research and application of TCN key technologies
) of China, and the National Key Technology R&D Program
(No. 2015BAG14B01-02), Austrian Science Fund (FWF)
under grants S11402-N23 (RiSE/SHiNE) and Z211-N23.

8. REFERENCES
[1] R. Alur. Timed automata. In Computer Aided

Verification, pages 8–22. Springer, 1999.

[2] A. Bouajjani, J. Esparza, and O. Maler. Reachability
analysis of pushdown automata: Application to
model-checking. In CONCUR’97: Concurrency
Theory, pages 135–150. Springer, 1997.

[3] P. Caspi and etc. From simulink to scade/lustre to tta:
a layered approach for distributed embedded
applications. In ACM Sigplan Notices, volume 38,
pages 153–162. ACM, 2003.

[4] C. Chen, J. Sun, Y. Liu, J. S. Dong, and M. Zheng.
Formal modeling and validation of stateflow diagrams.
International Journal on Software Tools for
Technology Transfer, 14(6):653–671, 2012.

[5] A. A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh,
S. Mohalik, and K. Shashidhar. Automotgen:
Automatic model oriented test generator for
embedded control systems. In Computer Aided
Verification, pages 204–208. Springer, 2008.

[6] Y. Jiang and Y. Yang. From stateflow simulation to
verified implementation: A verification approach and a
real-time train controller design. In 2016 IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2016.

[7] Y. Jiang and H. Zhang. Design and optimization of
multi-clocked embedded systems using formal
techniques. IEEE Transactions on Industrial
Electronics, 62(2):1270–1278, 2015.

[8] K. L. McMillan. The smv system. In Symbolic Model
Checking, pages 61–85. Springer, 1993.

[9] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and
R. Mangharam. Safety-critical medical device
development using the upp2sf model translation tool.
ACM Transactions on Embedded Computing Systems
(TECS), 13(4s):127, 2014.

[10] SimulinkDesignVerifier. http://www.mathworks.com.

[11] B. Tester. Applied dynamics international.

[12] I. The MathWorks. Stateflow user guide.

[13] R. Wang and M. Gu. Formal modeling and synthesis
of programmable logic controllers. Computers in
Industry, 62(1):23–31, 2011.

[14] H. Wernli, M. Paulat, M. Hagen, and C. Frei. Sal-a
novel quality measure for the verification of
quantitative precipitation forecasts. Monthly Weather
Review, 136(11):4470–4487, 2008.

[15] H. Zhang and H. Zhang. Design of mixed
synchronous/asynchronous systems with multiple
clocks. IEEE Transactions on Parallel and Distributed
Systems, 26(8):2220–2232.

857

