
1

PHCG: Optimizing Simulink Code Generation for
Embedded System with SIMD Instructions
Zhuo Su, Dongyan Wang, Zehong Yu, Yixiao Yang� , Yu Jiang� , Rui Wang, Wanli Chang,

Wen Li, Aiguo Cui and Jiaguang Sun

Abstract—Simulink is widely used for the model-driven design
of embedded systems. It is able to generate optimized embedded
control software code through expression folding, variable reuse,
etc. However, for some commonly used computing-sensitive
models, such as the models for signal processing applications,
the efficiency of the generated code is still limited.

In this paper, we propose PHCG, an optimized code generator
for the Simulink model with SIMD instruction synthesis. It
will select the optimal implementations for intensive computing
actors based on adaptively pre-calculation of the input scales,
and synthesize the appropriate SIMD instructions for batch
computing actors based on the iterative dataflow graph mapping.
In addition, actors of the same type that can be executed in
parallel can be combined into batch computing actors as much
as possible by merging isomorphic subgraphs. We implemented
and evaluated its performance on benchmark Simulink models.
Compared to the built-in Simulink Coder and the most recent
DFSynth, the code generated by PHCG achieves an improvement
of 38.9%-92.9% and 41.2%-76.8% in terms of execution time
across different architectures and compilers, respectively.

Index Terms—Code generation, model-driven design, SIMD
instruction, Simulink

I. INTRODUCTION

Simulink is one of the most widely used model-driven
design tools and is increasingly used in embedded scenarios
such as smart transportation, avionics and vehicles [2], [3],
[4], [5]. It supports the behavior modeling, simulation, and
code generation of embedded control software [6]. The auto-
matic code generation releases the developers from hard-work
coding, but the efficiency of the generated code is hard to
ensure and may affect the performance and the throughput of
the whole system [7], [5].

For optimization, expression folding and variable reuse
are mainly used in Simulink Coder [8] to generate more
compact code. Recently, DFSynth [9] optimizes the code
generation of Simulink models with complex branching logic.

Z. Su, Z. Yu, Y. Jiang and J. Sun are with the KLISS, BNRist,
School of Software, Tsinghua University, Beijing 100084, China (e-mail:
suzcpp@gmail.com).

D. Wang is with the Information Technology Center, Renmin University of
China, Beijing 100872, China (e-mail: wdy@ruc.edu.cn).

Y. Yang and R. Wang are with the Information Engineering Col-
lege, Capital Normal University, Beijing 100048, China (e-mail: yangyixi-
aofirst@163.com).

Wanli Chang is with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha 410082, China. (email:
wanli.chang.rts@gmail.com).

W. Li and A. Cui are with the HUAWEI Technologies, Co. LTD., Hangzhou
310000, China (e-mail: coco.liwen@huawei.com).

Yu Jiang and Yixiao Yang are the corresponding authors.
This paper is an extended version of a conference paper [1].

It transforms the branch logic to control flow code logic based
on semantics analysis. Although they perform well in many
cases, the efficiency is still limited for models that contain
intensive computing actors (e.g. fast Fourier transform), batch
computing actors (e.g. batch Add) and parallelizable actors.

4 5 6 7 8 9
1
0

1
2

1
6

2
0

3
2

5
0

6
4

1
0
0

1
2
8

2
0
0

2
5
6

3
0
0

4
0
0

5
1
2

6
0
0

8
0
0

1
0
0
0

1
0
2
4

2
0
0
0

3
0
0
0

4
0
9
6

8
0
0
0

8
1
9
2

1
6
3
8
4

6
5
5
3
6

Input Data Length (Array Size)

2.5

5

10

20

40

80

160

T
im

e
 C

o
s
t 

(n
s
)

Mix FFT

Rad-2 FFT

Galois FFT

Fig. 1. The time cost of different implementations of FFT intensive computing
actor on different input data lengths.

For the intensive computing actors, which usually take
batch data as input to perform complex calculations, the
tools such as Simulink Coder and DFsynth will generate a
generic function for computation. But in fact, for an intensive
computing actor, there are many different implementations,
and their efficiency varies at the different input scales [10],
[11]. Take FFT(Fast Fourier Transform)1 as an example. As
shown in Figure 1, we can see that no one implementation can
always perform better than the others for all input data lengths.
For example, Mix-FFT performs best on large input-scales,
but performs worse on small input-scales. When generating
code, the input and output scales of the actors in different
models are uncertain. So we should dynamically select the
more appropriate implementation codes based on the model
information to achieve optimal efficiency.

For the batch computing actors, which take an array as input
and output, and each element of the output array is calculated
from its corresponding input element with the same array
index, existing tools will generate repeated code segments or
function loops to accomplish the task. For example, Simulink
Coder uses the method shown in Figure 2 to generate code. But
if the SIMD (Single Instruction Multiple Data) instructions are
used, only two operations are required, which are vmlaq f32

1Mix FFT is obtained from the website: http://www.corix.dk/Mix-FFT/
mix-fft.html, Rad-2 FFT is a Radix-2 division FFT implementation, and
Galois FFT is obtained from the website: https://hackage.haskell.org/package/
galois-fft-0.1.0



2

(vector multiplication and addition) and vrecpsq f32 (vector
reciprocal) [12], [13]. Making full use of the compound
SIMD instructions of the processor can effectively improve
the running speed of the generated code [14]. For example,
the vhadd instruction in ARM architecture adds two vector
integers and then right shifts the addition result by one bit.
When the composition of batch actors is complex in the
model, we should select the appropriate compositions of SIMD
instructions for vector acceleration.

Fig. 2. A sample model with batch computing actors and the corresponding
code generated by Simulink Coder. Each computing actor in the model has
four batches of floating-point input and output data. So the code contains four
multiplications, four additions and four reciprocal.

For the parallelizable actors, which are multiple actors of
the same type in the model and have no data dependencies on
each other. Base on the traditional code generation method,
those actors will be translated separately into their own piece
of computation code [6], [9], [15], [16], [17], [18], [19],
[20]. If these parallelizable actors can be combined into batch
computing actors, we can better generate SIMD instructions to
improve the efficiency of the generated code. For example, the
model on the left in Figure 3 needs to perform two additions,
two left shifts, four subtractions and four multiplications. How-
ever, after actor parallelization for the model on the right, only
four calculations are required, one batch addition, one batch
left shift, one batch subtraction and one batch multiplication.
Once the model is optimized for actor parallelization, the
corresponding SIMD instructions can be generated by code
synthesis engine more easily.

(Batch)

(Batch)

(Batch) (Batch)
Mux Demux

Demux

Mux

Mux

Mux

Mux

Mux Mux

Demux

Fig. 3. An example of actor parallelization. The model on the left is an origi-
nal computing model, and the right is the model after actor parallelization. The
black linear shaped actors are the additional data merging actors (Combine
the elements from inports into an array for output, Mux actor in Simulink)
and data splitting actors (Split the array from inport into separate elements for
output, Demux actor in Simulink) introduced by actor parallelization process.

In this paper, we propose PHCG to optimize the code
generation of the Simulink models with SIMD instruction syn-
thesis. First, the basic arithmetic actors which can be executed
in parallel need to be combined as batch computing actors.
Then, the intensive computing actors and batch computing
actors will be classified for code generation. After that, for
the intensive computing actors, PHCG will choose the optimal
implementation to generate code. For batch computing actors,
PHCG will generate a group of SIMD instructions.

We implemented and evaluated PHCG on benchmark
Simulink models, which also contain intensive computing
actors, batch computing actors. The results show that PHCG
achieves excellent performance. Compared with the built-in
Simulink Coder and the most recent DFsynth [9], the code
generated by PHCG achieves an improvement of 38.9%-
92.9% and 41.2%-76.8% in terms of execution time across
different architectures and compilers, respectively. Not only
that, but comparative experiments in terms of lines of code,
memory usage of program and the time of code generation
also illustrate the effectiveness of PHCG.

II. RELATED WORK

A. Model-driven Design

Model-driven design is a widely used software development
method for embedded scenarios. It mainly consists of three
components: behavior modeling, simulation and code genera-
tion [5], [21], [3], [2], [22], [23]. Behavior modeling is used
to construct the formal model with text or graphics according
to the user requirement; Simulation is used for debugging
and functional correctness verification of the model. Code
generation is the key step to translate the model into code
for deployment on embedded devices. There are many design
tools, such as Ptolemy-II, Tsmart, Polychrony in academic
[15], [24], [16], [25], and Simulink, SCADE, DaVinci De-
veloper in industry [6], [17], [26]. Among them, Simulink
developed by MathWorks is the most popular for its powerful
model simulation and code generation capabilities. It provides
a rich library of components to support the design of systems
in multiple areas of industry. Moreover, the combination of
data flow semantics and state flow semantics gives it a strong
model representation capability.

B. Data flow model

Data flow model is a kind of computation graph model
which is composed of actors, ports, and data connections [27],
[19]. Where the actor represents a minimal computation unit
and its computation rules are usually determined by the type of
itself. For example, the Add actor is used to perform addition
operations. Ports are divided into inports and outports for
receiving data and sending data. Ports can be attached to actors
to describe their own inputs and outputs, or they can exist
individually in the model to describe the external inputs and
outputs of the entire computation graph. The data connection
is a channel for data transfer to represent the flow of data. The
source of the data connection can be either an inport of the
model or an outport of an actor. The destination of the data
connection can be either an outport of the model or an inport



3

Simulink 
Model

History Based
Search

Intensive 
Computing Actors

SIMD Instruction Synthesis

Pre-calculation

Batch
Computing Actors

Synthesis for Intensive Computing Actors Synthesis for Batch Computing Actors 

Basic
Actors

Synthesis
History

Code
Library

Dataflow Graph 
Construction

Instruction
Selection

CodeConventional 
Composition

Instruction
Set

Isomorphic Subgraph
Search

Actor Parallelization

Subgraph Merging

Model Parse

Actor Classification

Fig. 4. Overview of PHCG. The intensive computing actors and batch computing actors in the model are classified for code synthesis after parsing the model.
Then each intensive computing actor is translated into an optimal implementation which is suitable for the actor. Batch computing actors are integrated into
a dataflow graph and synthesised into SIMD instructions.

of an actor. The models in Figure 2 and Figure 3 are data flow
models of Simulink. In these models, the directed lines are the
data connections that indicating the flow of data. In particular,
the batch computing actors that is focused of this paper are
marked with “Batch” in the figure.

C. Code Generation

Code generation plays an important role because it will
convert the constructed model into code deployed in real
embedded devices [6], [15], [28], [29]. Most code generators
perform the following steps to generate code [30]: 1 Model
parse transforms model file into structured actor informa-
tion; 2 Schedule analysis obtains the scheduling relationship
among model actors; 3 Code synthesis generates fire code
for each actor; 4 Code composition integrates the fire code of
each actor into the output code according to the schedule. For
Simulink, the built-in Simulink Coder [8] works very well and
it supports efficient code generation for different architectures
and compilers with optimizations such as expression folding
and output variable reuse. There are also a lot of academic
works focusing on code generation [9], [18], [19], [31],
[32]. DFSynth [9] is the most-recent research work for code
generation of Simulink models. Based on schedule analysis
and branch information marking, it supports well-structured
code generation for complex branch logic.

D. Main Difference

The main difference between PHCG and those existing
generators is that PHCG is able to generate more optimal
implementation with SIMD instruction synthesis. For the basic
arithmetic actors that can be executed in parallel, it will
combine them into batch computing actors to generate SIMD
instructions; For those intensive computing actors, it will
determine the choice of implementation based on the pre-
calculation of the input scales adaptively; For those batch com-
puting actors, it will determine the proper SIMD instructions
set according to the iterative dataflow graph mapping.

III. PHCG DESIGN

PHCG takes the Simulink model as input and generates
efficient and deployable code for embedded devices as output.

It mainly consists of three components: Actor Paralleliza-
tion, Actor Classification and SIMD Instruction Synthesis, as
demonstrated in Figure 4. First, the Simulink model file needs
to be analyzed by the model parser as a directed calculation
graph. Then the calculation graph will be parallelized at the
actor level through isomorphic subgraph search and subgraph
merging, respectively. After that, the intensive computing
actors, batch computing actors and remainder basic actors will
be classified and dispatched for instruction synthesis. Next,
those actors are synthesized in different ways accordingly.
For intensive computing actors, PHCG considers the actor
type and the input scale to select the suitable and optimal
implementation code. For example, the FFT (Fast Fourier
Transform) actor in Figure 1 with 1024 floating point data
as input will be translated into the Radix-4 butterfly FFT
implementation code to adapt the input data scale. For batch
computing actors, PHCG converts them into a dataflow graph
and iteratively generates the optimal SIMD instructions with
graph mapping. For instance, the composition of a 4-batch Add
actor and a 4-batch Multiply actor in Figure 2 will be translated
into a vmadd instruction (batch multiply and add instruction)
instead of four add instructions and four mul instructions. For
remainder basic actors and the code snippets composition, the
conventional translation method of the built-in Simulink Coder
will be used.

A. Actor Parallelization

For a given Simulink model, the first step is to parse the
model into structured actors, connections and other model
elements in memory. Then the actors and the connections
will be represented as a directed dataflow graph for further
analysis. For generating more SIMD instructions at the SIMD
instruction synthesis step, the basic arithmetic actors need to
be combined into batch computing actors as more as possible.
An example of actor parallelization is shown in Figure 3.
In this example model, four Add actors, four Sub actors,
two Mul actors and two Shl actors are merged into batch
computing actors corresponding to their types, respectively.
Table I demonstrates the most frequently used basic arithmetic
actors in Simulink model libraries [6]. The Actor Paralleliza-
tion process is mainly implemented by two algorithms, the
isomorphic subgraph search algorithm which is used to find



4

computing subgraphs with the same topology in the directed
dataflow graph and the subgraph merging algorithm which
is used to merge subgraphs with the same topology. This
process is iterative, it finds the largest isomorphic subgraph
to merge each time until no isomorphic subgraph is found.
Choosing the largest isomorphic subgraph for merging each
time can increase the parallelism of the model as much as
possible. If there are multiple largest isomorphic subgraphs of
the same size, just select one at random and the rest isomorphic
subgraphs will be output in later iterations.

TABLE I
MOST FREQUENTLY USED BASIC ARITHMETIC ACTORS IN SIMULINK

MODEL LIBRARIES.

Type Description
Add/Sub/Mul/Div Add, Subtract, Multiply, Divide
Shr/Shl Right shift, Left shift
BitNot/And/Or/Xor Bit-wise Not/And/Or/Xor
Min/Max Minimum, Maximum
Abs/Abd Absolute, Absolute difference
Recp/Sqrt Reciprocal, Square Root

1) Isomorphic subgraph search: A prerequisite for some
subgraphs to be merged is that they must be isomorphic. An
isomorphic subgraph is composed of two or more subgraphs
whose actor types and connectivity relationships between ac-
tors are the same. To explore more parallelism between actors,
we need to find as large isomorphic subgraphs as possible. The
algorithm of the largest isomorphic subgraph search is shown
bellow in Algorithm 1. An example of isomorphic subgraph
search with four Sub actors as the initial isomorphic subgraph
(also called seed) is shown in Figure 5.

- - - -

-

×

-

×

-

×

-

×

-

+

×

-

+

×

-

<<

×

-

<<

×

(c) Process of isomorphic subgraph 

extension

-

+

×

-

+

×

-

<<

×

-

<<

×

(a) An example data flow model

- -

× -

+

×

-

<<

×

×4

Nodes:4

×4

Nodes:8
×2

Nodes:6

×2

Nodes:6

(b) Results of isomorphic 

subgraph extension

Fig. 5. An example of isomorphic subgraph search. Subfigure (a) is an
example data flow graph which corresponds to the model in Figure 3.
Subfigure (b) shows all searched isomorphic subgraph based on Sub node. The
largest isomorphic subgraph is Sub-Mul graph, and it contains eight nodes.
Subfigure (c) is an illustration of the extension process.

In algorithm 1, the actors which are supported to merge
are classified by their type, as shown in lines 1-4. The
actors with the same type will be used as the seed and will
be iteratively extended later. In lines 5-15, all isomorphic
subgraph extended from the seeds will be found and stored into
a list variable named isoGraphList. The process of obtaining
all isomorphic subgraphs is carried out separately according to

the actor types of seeds. It means that all supported actors will
be used as initial seeds for subgraph extension. For example,
all actors with Add type will be considered as a seed for
subgraph extension. In line 7, each actor with same type needs
to be converted form a single actor node into a directed graph
format. Then, a queue of extensible isomorphic subgraphs
named extIsoGraphQ is used to extend subgraphs iteratively
until it becomes empty, as shown in lines 8-11. For each
isomorphic subgraph in extIsoGraphQ is a candidate largest
isomorphic subgraph and it will be added into isoGraphList
in line 12. Line 13 attempts to extend a actor node on an
isomorphic subgraph in the queue. The extendOnce function
will output all possible subgraphs that extend one node, and
these output subgraphs are not contained in each other. This
means that all isomorphic subgraphs will be explored without
omission. The extend result will be add into the queue for
further extension, as shown in lines 14-15. Finally, in lines 16-
24, the largest isomorphic subgraph which has the maximum
number of actors will be returned. Especially, there are no
data dependencies between all subgraphs contained in the
returned isomorphic subgraph. This is because only then these
subgraphs can be executed in parallel. The dependencies of
these subgraphs are analyzed from the data flow of the model
and are represented as an undirected graph, as shown in line
19. In this undirected graph, each node represents a subgraph
in the isomorphic subgraph, and each edge indicates that the
two subgraphs do not have data dependencies on each other. To
obtain the maximum number of subgraphs that can be executed
in parallel, we use the maximum clique algorithm [33], [34] to
obtain the largest isomorphic subgraphs without dependencies,
as shown in lines 20-21. In our design, the Bron-Kerbosch
algorithm is used to solve the maximum clique problem [35].
As shown in Figure 5.(b), the largest isomorphic subgraph is
Sub-Mul graph, it contain four isomorphic subgraphs with a
total of eight nodes.

It is important to note that the function named extendOnce
in line 13. Figure 5.(c) shows the execution of extendOnce
function twice. For one extension of the isomorphic subgraph,
the function extends each subgraph in the isomorphic subgraph
with a node of the same position and the same type, or as
many subgraphs as possible if they cannot all be extended
with an identical node. That is, the subgraph extension uses
a maximum priority strategy. As shown in Figure 5.(c), each
Sub node (graph) can be extension with an Mul node, which
is located on the lower left side of the Sub node. As for
the nodes on the upper right of the Sub node, it is not
possible to extend all of them, because they are of different
types, two are Add nodes and two are Shl nodes. Once they
cannot all be extended with an identical node, we need to
use fewer subgraphs for the extension. This may result in
multiple extensions, and the resulting isomorphic subgraphs
cannot be further extended from each other. This ensures the
completeness of the extended results. Performing a subgraph
search based on one type of actor may lead to duplication. For
example, subgraph extension based on the four Mul nodes in
Figure 5.(a) also gives the same results as shown in Figure
5.(b). For these duplicate searches we can check the already
obtained isomorphic subgraphs to reduce the search space.



5

Algorithm 1: The largest isomorphic subgraph search
Input: Graph: The directed dataflow graph of a given model
Input: TypeSet: All supported types of batch arithmetic actors
Output: LargestIsoGraph: The largest isomorphic subgraph

1 actorMap = {} // A map structure, key: actor type, value: actor list
// eg: {Add:{A1, A2}, Sub:{A3, A4, A5}}

2 for actor in Graph do
3 if actor.Type in TypeSet then
4 actorMap[actor.Type].add(actor)

5 isoGraphList = {} // A list of found isomorphic subgraph
6 for key, value in actorMap do
7 isoGraphSeed = toGraph(value)
8 extIsoGraphQ = {} // A queue of extensible isoGraph
9 extIsoGraphQ.add(isoGraphSeed)

10 while not extIsoGraphQ.empty() do
11 curIsoGraph = extIsoGraphQ.pop()
12 isoGraphList.add(curIsoGraph)
13 isoGraphExtedList = extendOnce(curIsoGraph)

// Extend one actor for each subgraph in curIsoGraph
14 if not isoGraphExtedList.empty() then
15 extIsoGraphQ.add(isoGraphExtedList)

16 LargestIsoGraph = NULL
17 maxActorCount = 0
18 for isoGraph in isoGraphList do
19 depGraph = getDependencyGraph(isoGraph, Graph)

// Construct dependency graph between subgraphs
20 maxClique = getMaximumClique(depGraph)

// Solve the Maximum Clique Problem
21 indGraph = getIndependentGraph(isoGraph, maxClique)

// Obtain the maximal independent isomorphic subgraph
22 if indGraph.ActorCount < maxActorCount then
23 maxActorCount = indGraph.ActorCount
24 LargestIsoGraph = indGraph

25 return LargestIsoGraph

2) Subgraph merging: For the largest isomorphic subgraph
from the Algorithm 1, we need to merge all the subgraphs in it.
The process of merging is performed on the model according
to the isomorphic subgraph. The essence of merging subgraphs
is to transform those actors at corresponding positions in the
isomorphic subgraph into a batch computing actor. But for
the integrity of the model, the data merging actors and the
data splitting actors need to be added to the model separately,
as shown in Figure 3. The model on the right in Figure 3 is
constructed after three times of subgraph merging algorithm.
The first time, the Add and Sub actors are merged. The second
time, the Mul actors are merged. The third time, the Shl actors
are merged.

Algorithm 2 shows the detail of subgraph merging pro-
cess. First, we need two list variables to store the external
inports and outports of the isomorphic subgraph, in lines 2-
3. The data for these inports come from actors outside the
subgraph, and the data from these outports are output to
actors outside the subgraph. Then, in lines 4-8, the external
inports are collected by traversing the actors corresponding
to the isomorphic subgraph and determining whether the data
source is in the subgraph. We just need to traverse the actors
corresponding to the first subgraph in isomorphic subgraph.
It is because that other actors can be found through the
isomorphic relations. The collecting of external outports is
similar with inports, omitted in line 9. After that, actors for
data merging and data splitting need to be created in the model.

For each inport in extInportList, a data merging actor will
be created to combine individual data into an array, in line 11.
It will connect to the original source of the inports with the
same position in isomorphic subgraph and break the original
connection between these inports and their source. In its place,
a batch data connection is made, in line 15. Similar processing
is used to create data splitting actors and related connections
based on extOutportList, omitted in line 16. Finally, in lines
17-21, the actors corresponding to the first subgraph will be
converted to batch computing actors and others will be deleted.

Algorithm 2: Subgraph merging
Input: Model: The Simulink model
Input: IsoGraph: Isomorphic Subgraph
Output: OptModel: The optimized Simulink model

1 OptModel = Model
2 extInportList = {} // Store the external inports of IsoGraph
3 extOutportList = {} // Store the external outports of IsoGraph
4 for node in IsoGraph[0] do
5 // “[0]” indicates the first subgraph in IsoGraph
6 for inport in node.actor do
7 if not inport.srcNode in IsoGraph[0] then
8 extInportList.add(inport)

9 · · · // The outports are handled in the same way.

10 for inport in extInportList do
11 actor = createDataMergingActor(OptModel, IsoGraph.size)
12 for port in IsoGraph.getSamePosPort(inport) do
13 connect(port.src, actor)
14 disconnect(port.src, port)

15 connect(inport, actor)

16 · · · // The outports are handled in the same way.
17 for node in IsoGraph do
18 if node in IsoGraph[0] then
19 OptModel.convertBatchActor(node.actor)
20 else
21 OptModel.delete(node.actor)

22 return OptModel

B. Actor Classification

Each actor will be translated into a snippet of code rep-
resenting the execution logic of the actor semantic. In the
conventional code generation method of Simulink Coder or
DFSynth, actors are translated using actor templates that
contain the fire code of each actor. In our work, the intensive
computing actors and batch computing actors are separated
by PHCG to synthesize more efficient code with SIMD
instructions. The above two types of actors are identified and
dispatched with the actor type and the input scale.

The intensive computing actor is the actor that takes an array
as input, and the output of the actor is calculated from at least
one pair of array elements. The input and output elements do
not correspond one-to-one. For example, an actor whose type
is FFT will be identified as an intensive computing actor, and
Fast Fourier Transform is a complex calculation process with
large-scale input. The batch computing actor is the actor that
also takes an array as input and output, but different from the
intensive computing actor, each element of the output array
is calculated from its corresponding input element with the
same array index. For example, if the type of an actor is
Multiply and at least one of its input ports is an array, the



6

actor will be identified as a batch computing actor. Table II
demonstrates the most frequently used intensive computing
actors in Simulink model libraries [6], and the most frequently
used batch computing actors are the same as in Table I.

TABLE II
MOST FREQUENTLY USED INTENSIVE COMPUTING ACTORS IN SIMULINK

MODEL LIBRARIES.

Type Description
MatMul 2x2, 3x3, 4x4 Matrix multiplication
MatInv 2x2, 3x3, 4x4 Matrix inversion
MatDet 2x2, 3x3, 4x4 Matrix determinant calculation
FFT/IFFT 1, 2-D (Inverse) Fast Fourier transform
DCT/IDCT 1, 2-D (Inverse) Discrete cosine transform
Conv 1, 2-D Convolution

C. SIMD Instruction Synthesis

The identified intensive computing actors and batch com-
puting actors (Contains the actors resulting from the actor
parallelization process.) are passed to the SIMD Instruction
Synthesis module for optimal implementation generation.

1) Code synthesis for intensive computing actors: There
are many efficient implementations with built-in SIMD in-
structions for an intensive computing actor, for example, the
three implementations of FFT actor presented in Figure 1.
But the performance of different implementations varies at
different input scales. Hence, to generate more efficient code
for deployment, it is necessary to consider the input scale of
the actor adaptively. PHCG will perform pre-calculation to
decide which implementation is the best for the corresponding
input scale. For acceleration, it will also store the history
implementation information for a quick search. The overall
procedure is presented in Algorithm 3.

Before the pre-calculation, we will perform a preliminary
and lightweight search based on the synthesis history informa-
tion. It will traverse the implementation synthesis history and
decide whether there is an existing index that matches the type
and input size of the intensive computing actor, as presented
in Lines 3-6. If there is a matched index, the corresponding
implementation will be returned as the synthesized code for the
current actor. If not, the code library will be loaded according
to the computing actor type. The code library is a one-to-many
implementation list and contains all different implementations
for each specific actor.

Then, we will perform pre-calculation on these implementa-
tions contained in the library and compare their efficiency on
the corresponding input scales. In line 9, a variable is defined
to record the minimum cost of the best implementation. To
measure the cost of each implementation, a piece of test input
data is generated randomly according to the input size of the
computing actor, as shown in line 10. In lines 11-14, each
implementation in the list needs to be filtered by the input
data type and size, because some special implementations only
serve special data types and sizes. For example, the Radix-
2 FFT implementation aims to speed up the FFT with the
input size of 2n. In line 14, the implementations that passed

Algorithm 3: Synthesis for intensive computing actors
Input: ActorType: Type of the intensive computing actor
Input: DataType: Data type of the actor’s input
Input: DataSize: Data size of the input port
Output: ImplBest: The selected optimal implementation for the

specific actor
1 SelectionHistory = loadSelectionHistory(ActorType)
2 ImplBest = NULL
3 for Selection in SelectionHistory do
4 if Selection.DataType == DataType and

Selection.DataSize == DataSize then
5 ImplBest = Selection.Algorithm
6 return ImplBest

7 ImplList = loadCodeLibrary(ActorType)
8 ImplBest = ImplList.getGeneralImplementation()
9 MinCost = MAX

10 TestInput = generateTestInput(DataSize)
11 for ImplTest in ImplList do
12 if not ImplTest.canHandleDataType(DataType) or

not ImplTest.canHandleDataSize(DataSize) then
13 continue
14 Cost = runImplementation(ImplTest, TestInput)
15 if Cost < MinCost then
16 ImplBest = ImplTest
17 MinCost = Cost

18 storeSelection(ActorType, DataType, DataSize, ImplBest)
19 return ImplBest

the filtering run with the piece of test data and return a
cost value. If the cost is lower than the recorded cost, the
best implementation will be replaced by the current one with
minimum cost also being refreshed, as shown in lines 15-17.
Finally, the best implementation for the specific actor with the
current input type and size will be stored and returned.

2) Code synthesis for batch computing actors: The code
synthesis for batch computing actors is based on the iterative
dataflow graph mapping and mainly consists of two steps.
The first step of dataflow graph construction is to collect the
interconnected actors which have the same I/O scales and bit-
width of data element, according to the connections among the
identified batch computing actors. The second step of instruc-
tion selection is to generate the optimal SIMD instructions
based on the iterative mapping on dataflow graphs. Figure
6.(a) and (b) illustrate a sample model and the corresponding
directed dataflow graph. Some examples of SIMD instructions
shown in Figure 6.(c) will be selected to map to the directed
dataflow graph based on their own computing graph. To
obtain higher efficiency, PHCG tries to give preference to map
more complex SIMD instructions. The algorithm of SIMD
instruction selection is shown in Algorithm 4.

The following describes the details of SIMD instruction
selection. To find the largest instructions to map the largest
subgraphs of the directed dataflow graph from top to down.
The larger the instruction graph mapped, the higher the
computation efficiency. First, we need to calculate the batch
size and the batch count according to the size of the input
data and the bit-width of the vector register. The batch size
indicates how much data can be stored by the vector register
and the batch count indicates how many batches of input data
there are. If the batch count is less than 1, it means that the
input data is not enough to completely fill the vector register



7

×

+

+

-a d

b

>>

c

1

-

+

×

>>

×

+

+

>>

1

vsubq_s32

vaddq_s32

vmulq_s32

vshlq_s32

vmlaq_s32

vhaddq_s32

(b) Data flow graph (c) SIMD instructions(a) Sample model

Fig. 6. SIMD instruction selection. (a) is a Simulink model with batch com-
puting actors. (b) is a directed dataflow graph constructed from the Simulink
model on the left. (c) shows some candidate SIMD instructions and their
corresponding computing graphs. The SIMD instructions named vsubq s32,
vmlaq s32 and vhaddq s32 are selected for potential implementations of
subgraphs in (b) with different color.

and the conventional synthesis method of Simulink will be
called to translate the dataflow graph instead of the SIMD
instruction selection, as shown in lines 1-4. A snippet of loop
code is generated to perform batch calculation cyclically when
the batch count is greater than or equal to 2, as shown in
lines 5-8. Note that the loop starts with an index of offset,
indicating that the length of the remaining data cannot fill the
entire vector register. In line 9, the data preparation variable
with SIMD data type is generated according to the external
input of the dataflow graph. For example, one of the data
preparation variable code of the dataflow graph in Figure 6.(b)
is int32x4 t a batch = vld1q s32(a).

Then the dataflow graph will be mapped part by part
until it is completed mapped, as shown in lines 10-22. For
a non-empty graph, the topmost and leftmost node will be
extended to some subgraphs within the limits of the max
graph depth and the max graph node count of the candidate
SIMD instructions’ computing graph, as shown in lines 12-
13. For example, three subgraphs will be extended from the
Sub node (subgraph) in Figure 6.(b), which are Sub−Mul,
Sub−Add and Sub, respectively. To obtain higher efficiency,
subgraphs with more computation cost will be tried to be
matched first. For a subgraph, it must be a convex graph (The
nodes of the graph do not indirectly depend on the results of
its own nodes.) and its independence must be ensured (It does
not depend on any variables that have not been generated),
or the subgraph will be discarded, as shown in lines 15-
16. In lines 17-19, the matching SIMD instruction will be
searched among all candidate SIMD instructions according to
the subgraph. If the search fails, the subgraph will be discarded
too. Once the matching SIMD instruction is found, in line 20,
the calculation code with SIMD will be added into the loop
code. For example, the calculation code of the Sub subgraph
is int32x4 t Sub batch = vsubq s32(b batch, c batch).
When the data source type does not match the input data
type of the subgraph, a type conversion code with SIMD
will be generated. Then the subgraph will be removed from
the total dataflow graph to continue the algorithm. Finally,
the remaining computation code has the same computation
logic as the code inside the loop, and it will be added to
the front of the loop code as needed. Listing 1 shows the

Algorithm 4: Synthesis for batch computing actors
Input: Graph: The directed dataflow graph of batch computing

actors with same I/O scales and data bit width
Input: InsSet: All candidate SIMD instructions
Input: V ectorWidth: The bit width of each vector register
Output: RetCode: The output code with SIMD instruction

1 BatchSize = V ectorWidth / Graph.DataBitWidth
2 BatchCount = Graph.DataLen / BatchSize
3 if BatchCount ¡ 1 then
4 return conventionalTranslate(Graph)

5 LoopCode = ∅ // Main loop code for SIMD calculation
6 Offset = Graph.DataLen % BatchSize
7 if BatchCount ≥ 2 then
8 LoopCode.addLoop(Offset, Graph.DataLen, BatchSize)

// e.g. for (i = offset; i ¡ dataLen; i += batchSize) {...}
9 LoopCode.addDataLoadSIMDCodeAndVar(Graph)

// e.g. int32x4 t a batch = vld1q s32(&a[i])
10 LastGraph = Graph
11 while LastGraph ̸= ∅ do
12 Node = LastGraph.getTopLeftNode()
13 SubgraphSet = Node.extendGraphs()

//Sort by the cost of subgaph
14 for Subgraph in SubgraphList do
15 if isNotConvexGraph(Subgraph) or

isNotIndependent(Subgraph) then
16 continue
17 Ins = InsSet.getMatchInstruction(Subgraph)
18 if Ins == NULL then
19 continue
20 LoopCode.addCalculationSIMDCode(Subgraph, Ins)

// e.g. int32x4 t c batch = vsubq s32(a batch, b batch)
21 LastGraph.removeNodes(Subgraph)
22 break

23 LoopCode.addDataStoreSIMDCode(Graph)
// e.g. vst1q s32(&a[i], a batch)

24 RemainCode = ∅ // Process the remaining data
25 if Offset ̸= 0 then
26 RemainCode = getRemainCalulationCode(LoopCode)

27 return RemainCode + LoopCode

SIMD instructions of the sample model in Figure 6 generated
according to Algorithm 4.

1 int32x4 t a batch = vld1q s32(a) ; // Load data to vector register
2 int32x4 t b batch = vld1q s32(b) ;
3 int32x4 t c batch = vld1q s32(c) ;
4 int32x4 t d batch = vld1q s32(d) ;
5 int32x4 t Sub batch = vsubq s32(b batch, c batch) ; // Batch Sub
6 int32x4 t Shr batch = vhaddq s32(a batch, Sub batch);
7 int32x4 t Add batch = vmlaq s32(Sub batch, Sub batch, d batch);
8 vst1q s32(Shr out, Shr batch) ; // Store data to memory
9 vst1q s32(Add out, Add batch);

Listing 1. The SIMD instructions of the sample model in Figure 6 generated
according to Algorithm 4

D. Implementation

PHCG 2 is implemented in C++, with 28,386 lines of code.
Unzip and Tinyxml libraries are used to parse the Simulink
model. A model optimizer is implemented to parallelize the
actors. A synthesis engine is implemented to translate intensive
computing actors and batch computing actors to optimal
implementations, respectively. Then conventional composition
codes are implemented to synthesize the final deployable code.

2The implementation and the benchmark Simulink models are uploaded on
the GitHub to facilitate the review: https://github.com/CodeGenHCG/HCG.



8

For the support of cross-architecture, the code library for
intensive computing actors and the instruction set information
for batch computing actors are extracted as external files. Espe-
cially for the instruction set information, the calculation graph
and the code format of each SIMD instruction is defined as
the following form: Graph : Add, i32, 4, I1, I2, O1 ;Code :
O1 = vaddq s32(I1, I2);. In this way, the SIMD instruction
synthesizer just needs to replace the I/O variable for code
generation on different architectures.

IV. EVALUATION

We evaluate the effectiveness of code generated by PHCG
in terms of execution time against DFSynth and Simulink
Coder. Besides, we also evaluate the effectiveness of PHCG
on different processor architectures with the two most widely
used C-Compilers, GCC and Clang. We conducted compara-
tive experiments on the benchmark models of Simulink and
DFSynth. FFT, DCT and Conv are models containing intensive
computing actors, which are used for fast Fourier transform,
discrete cosine transform and convolution for one-dimensional
signal, respectively. HighPass, LowPass and FIR are models
containing batch computing actors such as batch Add, batch
Sub and batch Mul, which are used for high pass filtering, low
pass filtering and finite impulse response filtering, respectively.
HP(P), LP(P) and FIR(P) are manually converted from the
previous three benchmark models respectively. The conver-
sion method is to replace the batch computing actors with
multiple actors that can be parallelized. The actor paralleliza-
tion capability of PHCG can be evaluated by comparing the
performance of the generated code before and after using the
batch computing actors.

A. Effectiveness on Benchmark Models

The generated code of PHCG, Simulink and DFSynth are
all presented in the GitHub repository. For the time efficiency
of the generated code, they executed with the same number of
10,000 times in the same environment (Debian 10 x64, ARM
Cortex A72, GCC). To avoid unfairness caused by advanced
compiler optimizations, here we just enable the compiler’s
first-level optimization flag (-O1).

TABLE III
COMPARISON ON EXECUTION TIME

Model Simulink DFSynth PHCG PHCG Improvement
Simulink DFSynth

FFT 0.459s 0.503s 0.183s 60.2% 63.7%
DCT 0.430s 0.451s 0.121s 71.9% 73.2%
Conv 0.591s 0.722s 0.178s 69.9% 75.4%
HighPass 0.447s 0.446s 0.262s 41.3% 41.2%
LowPass 0.369s 0.305s 0.164s 55.5% 46.1%
FIR 0.415s 0.551s 0.205s 50.6% 62.8%
HP(P) 0.448s 0.711s 0.197s 56.0% 72.3%
LP(P) 0.312s 0.464s 0.126s 59.6% 72.8%
FIR(P) 0.330s 0.463s 0.193s 41.4% 58.2%

Table III shows the average result of the execution time.
In general, compared with the code generated by Simulink
Coder and DFSynth, the code generated by PHCG decreases

the execution time by 41.3%-71.9% and 41.2%-75.4% respec-
tively. These statistics above illustrate that PHCG can generate
correct code that achieves higher performance.

The reason for less execution time of PHCG compared to
DFSynth is that DFSynth cannot generate batch computation
code for intensive and batch computing actors with SIMD
instructions, much less for parallelizable actors. It is difficult
to obtain better efficiency with DFSynth based on generic
intensive computation functions and loop calculation codes.
As for Simulink Coder, it supports some SIMD instructions
but usually fails to identify some batch computing actors in
models. For example, the model named FIR contains two
connected batch computing actors, batch Mul (i32*1024) and
batch Add (i32*1024), but no SIMD instruction is generated
by Simulink Coder to accelerate the computing. Simulink
Coder also generates generic functions for intensive comput-
ing actors. Same as DFSynth, Simulink Coder has no actor
parallelization capability.

B. Effectiveness on Different Architectures

To verify the ability of cross-architecture support, we re-
peated the experiment mentioned in Section IV-A on Intel
architecture (ArchLinux 5.14.16 x64, Intel i7-8700). Since the
Intel processor and ARM embedded device we used exist a
performance gap, the number of executions on Intel is 10x
than ARM. To eliminate the impact of different compilers, we
also conducted the experiment on the two most widely used
C-Compilers (GCC 11.1.0 and Clang 12.0.1).

Each subfigure in Figure 7 shows the execution time of code
generated by Simulink Coder, DFSynth and PHCG running on
an ARM processor and Intel processor compiled with GCC
and Clang. We can see that code generated by PHCG always
performs better than that of Simulink Coder and DFSynth.
For example, compared with Simulink Coder and DFSynth
on Intel processor with GCC, PHCG decreases execution time
by 76.5% and 67.6% on average respectively. The results in
Figure 7.(b) are quite different from the others, especially
for the batch computing models. This is because the code
generated by Simulink Coder contains scattered Intel SIMD
instructions (Some actors are not translated into composite
SIMD instructions.), and GCC cannot organize these SIMD
instructions together, which results in frequent data exchange
between memory and vector registers. At this point, memory
latency becomes the main performance bottleneck. In contrast,
the SIMD instructions generated by PHCG are continuous, and
the results of SIMD calculation are directly used by the next
SIMD calculation without being written to the memory, which
effectively avoids memory latency. Note that PHCG is not only
useful on Intel and ARM, we can simply expand it to other
architectures by replacing the corresponding SIMD instruction
set in Algorithm 4.

C. Comparison on Other Important Aspects

To more fully evaluate our work, we also measured some
other important indicators of the codes generated by different
works. 1 LoC (Lines of Code): It can reflect the simplicity
of the code. Fewer lines of code means simpler code. For



9

0.00

0.08

0.15

0.23

0.30

0.38

0.45

0.53

0.60

0.68

0.75

FFT DCT Conv High
Pass

Low
Pass

FIR HP
(P)

LP
(P)

FIR
(P)

(a) Execution time on ARM (gcc) 

Simulink
DFSynth
PHCG

0.00

0.43

0.86

1.29

1.72

2.15

2.58

3.01

3.44

3.87

4.30

FFT DCT Conv High
Pass

Low
Pass

FIR HP
(P)

LP
(P)

FIR
(P)

(b) Execution time on Intel (gcc) 

Simulink
DFSynth
PHCG

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

FFT DCT Conv High
Pass

Low
Pass

FIR HP
(P)

LP
(P)

FIR
(P)

(c) Execution time on ARM (clang) 

Simulink
DFSynth
PHCG

0.00

0.21

0.42

0.63

0.84

1.05

1.26

1.47

1.68

1.89

2.10

FFT DCT Conv High
Pass

Low
Pass

FIR HP
(P)

LP
(P)

FIR
(P)

(d) Execution time on Intel (clang) 

Simulink
DFSynth
PHCG

Fig. 7. The execution time of the six benchmark models on ARM and Intel
with two different C-Compilers, GCC and Clang. X axis is the models and
Y axis is the execution time(s).

fair comparison, all codes were formatted using the same
indentation format (K&R style3). 2 MUoP (Memory Usage
of Program): This metric is important, especially on resource-
constrained embedded devices. 3 ToCG (Time of Code Gen-
eration): It represents the ability of the code generator to
handle more or more complex models. Table IV below shows
the comparison on the above three indicators.

Evaluation on LoC (Lines of Code): For a fair evaluation,
we counted the library part of each generated code separately.
Because highly efficient code is usually more complex in terms
of coding. For example, the FFT library generated by PHCG
contains 858 lines of code. But in fact users are more con-
cerned with the code that corresponds to the model logic rather
than how the library is implemented. From Table IV, PHCG

3https://en.wikipedia.org/wiki/Indentation style#K&Rstyle

TABLE IV
COMPARISON ON OTHER IMPORTANT ASPECTS

Model Tool LoC MUoP (kB) ToCG (s)

FFT
Simulink 184 + L:353 2640 1.58s
DFSynth 45 + L:355 2632 < 0.01s
PHCG 47 + L:858 2644 < 0.01s

DCT
Simulink 200 + L:434 2644 1.51s
DFSynth 47 + L:448 2640 < 0.01s
PHCG 47 + L:888 2652 < 0.01s

Conv
Simulink 205 2640 1.64s
DFSynth 42 + L:27 2624 < 0.01s
PHCG 42 + L:36 2624 < 0.01s

High
Pass

Simulink 185 2624 1.41s
DFSynth 70 2624 < 0.01s
PHCG 66 2624 < 0.01s

Low
Pass

Simulink 181 2624 1.51s
DFSynth 60 2624 < 0.01s
PHCG 58 2624 < 0.01s

FIR
Simulink 172 2632 1.39s
DFSynth 51 2624 < 0.01s
PHCG 53 2624 < 0.01s

HP(P)
Simulink 525 2628 1.56s
DFSynth 833 2632 < 0.01s
PHCG 66 2624 < 0.01s

LP(P)
Simulink 397 2628 1.32s
DFSynth 520 2628 < 0.01s
PHCG 58 2624 < 0.01s

FIR(P)
Simulink 296 2628 1.67s
DFSynth 617 2628 < 0.01s
PHCG 54 2624 < 0.01s

generates the shortest main logic code on most of the models.
This means that users can more easily read, understand or
reuse the generated code. It is particularly effective in reducing
code when there are parallelizable actors in the model. This is
because the actor parallelization process performed by PHCG
essentially reduces the number of actors in the model. As
for Simulink, it generates code with a lot of redundant data
structure definitions and run-time environment configuration.
Also in the Conv code generated by Simulink, the convolution
algorithm is embedded in the model logic function, which
makes the code logic difficult to understand. As for DFSynth,
since it generates code with a similar structure as PHCG, it
has about the same number of LoC as PHCG on models other
than those with parallelizable actors.

Evaluation on MUoP (Memory Usage of Program): As
shown in Table IV, all the codes require about the same
amount of memory for execution, since they actually use
almost the same number of variables and do not use any
memory allocation functions such as malloc. Even though
PHCG generates more complex and efficient library code for
some models with intensive computing actors, it does not bring
additional memory overhead. Besides, the gap in the total
number of lines of code does not have a significant impact
on the memory usage metrics.

Evaluation on ToCG (Time of Code Generation): Since
both DFSynth and PHCG are lightweight code generators im-
plemented in C++, they are fast from parsing the model to gen-
erating code in just a few dozen milliseconds. While Simulink
takes a longer time to accomplish the code generation. So we



10

probed the behavior of Simulink during code generation using
a program monitoring approach. The monitoring results show
that Simulink uses a large number of temporary files to store
information such as models and configurations needed for code
generation, resulting in a lot of time spent reading and writing
to the hard disk. It is worth mentioning that although PHCG
uses pre-calculation to select the optimal implementation from
the code library, it is able to generate code quickly for models
with intensive computing actors because PHCG maintains a
synthesis history to obtain the optimal solution faster.

D. Comparison with the Vectorization of Compiler

Because of the SIMD mechanism introduced by the proces-
sor, modern compilers also try to compile parallelizable code
into SIMD instructions as much as possible [36], [37], [38],
[39]. However, current compilers still have a great limitation
when it comes to SIMD instruction selection for source code
due to the complexity of code analysis [40], [41]. To explore
whether the compiler can also achieve the same effect as
PHCG, we conducted a comparison experiment on Intel with
GCC compiler. We enabled the highest level optimization flag
of the compiler (-O3) and also tried three cost models used for
vectorization (-fvect-cost-model=unlimited, dynamic, cheap).
The experiment results are shown in Table V.

TABLE V
THE EFFICIENCY IMPROVEMENT OF CODE GENERATED BY PHCG

COMPARED TO SIMULINK AND DFSYNTH

Model Tool unlimited dynamic cheap

FFT Simulink 46.1% 42.3% 42.3%
DFSynth 61.3% 43.1% 43.1%

DCT Simulink 64.2% 64.7% 64.7%
DFSynth 64.7% 64.2% 63.6%

Conv Simulink 80.8% 80.8% 80.8%
DFSynth 78.9% 79.2% 79.2%

HighPass Simulink 53.8% 52.6% 53.8%
DFSynth 40.0% 37.9% 40.0%

LowPass Simulink 59.4% 59.4% 59.4%
DFSynth 31.6% 27.8% 27.8%

FIR Simulink 72.5% 72.8% 72.8%
DFSynth 21.4% 21.4% 24.1%

HP(P) Simulink 85.3% 83.6% 83.6%
DFSynth 84.8% 83.6% 83.6%

LP(P) Simulink 18.8% 18.8% 13.3%
DFSynth 80.0% 80.0% 79.7%

FIR(P) Simulink 48.0% 48.0% 50.0%
DFSynth 53.6% 53.6% 53.6%

We can see that the compilers still have a lot of room
for improvement in automatic vectorization, especially for the
code that we artificially thought would be easy to automati-
cally vectorize, that is, the code generated by Simulink and
DFSynth for the models named HP(P), LP(P) and FIR(P).
Simulink supports expression folding, so it generates code that
looks similar to the code in Figure 2. While DFSynth does
not support expression folding, its code looks like performing
four Mul operations, then four Add operations, and finally four
Div operations. However, only the code for LP(P) generated
by Simulink can be vectorized better by compiler. Experiment
results shows that although the compiler enable the highest

level optimization flag the code generated by PHCG can
perform better result.

V. DISCUSSION

The extensibility of our work: Currently, PHCG mainly
focuses on the Simulink model, but its optimizations can be
customized to other models and actors easily, because PHCG
only aims to optimize the implementation part of actors and
does not affect other actions (e.g. composition part) in code
generation. For example, to extend to the model of Ptolemy
[15], only one more constraint is needed to be satisfied for
dataflow graph construction in Algorithm 4, that is, the batch
computing actors must have the same branch information. So,
the actors on each branch can be ensured to be translated
into code in the correct place. In addition, the optimizations
of PHCG can work together with other code generators for
more complex scenarios. For example, we can integrate the
branch scheduling of DFSynth [9] into PHCG. Furthermore,
the parallelization process of PHCG is mainly based on data
flow graph, and these methods we proposed would be very
suitable for program or compiler optimization if existing code
could be represented as such data flow graphs. However, the
conversion from code to the high-level data flow graph we
need may be complex. The code is more flexible compared
to the model because it has elements such as pointer, class
object, loop statement, etc. So the extension of our work to
program or compiler optimization will be our future work.

The complexity of isomorphic subgraph search: Search-
ing for isomorphic subgraphs in directed graphs is indeed
an NP-hard problem. However, the algorithm we purposed is
more targeted to data flow graphs with computational node
information, which makes the problem we faced much simpli-
fied. The main body of the largest isomorphic subgraph search
is a BFS algorithm and the time complexity of extending one
node at a time is O(2N ) (N is the number of neighboring nodes
of the current isomorphic subgraph.). Although it is still an
NP-hard problem, it hardly reaches the worst case in practical
scenarios. First, getting the initial subgraph by node type
already decomposes the isomorphic subgraph search problem
largely. Second, we have used the already found subgraphs
to de-duplicate the subsequent search process. Third, for the
subgraph extension process, we use the maximum extension
first strategy, which generally takes only linear time to achieve
the result of O(2N ) problem in practical scenarios.

The capability of the parallelization strategy: The selec-
tion and merging of the largest isomorphic subgraph each time
during actor parallelization is essentially a greedy algorithm.
It is also difficult to know how to merge actors to obtain
the highest efficiency of the generated code for the model,
because it is affected by many aspects such as SIMD instruc-
tion synthesis, compiler optimization and processor execution.
Therefore, this paper only presents a possible approach to
parallelize actors. It finds the approximate optimal solution
only at the model level using this greedy algorithm. For two
largest isomorphic subgraphs or when the second largest graph
is close to the largest one, it can be discussed in two cases:
(1) If there is no any overlap between the two graphs, then



11

either one can be merged and the remaining one can be
merged at the next iteration. This has no effect on the result
of actor parallelization. (2) If there is an overlap between
the two graphs, after selecting one of the largest subgraphs
for merging, there may be some actors in the remaining
part that cannot be parallelized. This may eventually affect
the execution efficiency of the generated code, but since we
have used SIMD instructions to significantly improve the
performance, this effect is much smaller in comparison.

The limitation of SIMD instruction synthesis: Results
demonstrate that for the Simulink models with more intensive
and batch computing actors, we can achieve higher improve-
ments. Nevertheless, when the model contains one or two
batch computing actors, PHCG will still translate them into
SIMD instructions. In these cases, the efficiency of the SIMD
instructions may be less than the code generated by the
conventional method because of the cost of data transmission
between memory and vector registers. We can solve this
problem by a preliminary check and setting a threshold to
trigger the SIMD instruction synthesis.

VI. CONCLUSION

In this paper, PHCG is proposed to optimize the code
generation of Simulink models with SIMD instruction syn-
thesis, especially for the increasingly widely-used computing-
sensitive models that contain intensive computing actors, batch
computing actors and parallelizable actors. More specifically,
isomorphic subgraph merging is used to parallelize actors as
much as possible; adaptive pre-calculation on input scales
is used to mitigate the performance variance of intensive
computing actors on different scenarios; and the largest graph
mapping based SIMD instruction selection is used to generate
the optimal implementations of batch computing actors. Ex-
periments show that PHCG can perform well on benchmark
Simulink models. The code generated by PHCG will reduce
the execution time by 38.9%-92.9% and 41.2%-76.8% in terms
of different compilers and architectures, compared to the built-
in Simulink Coder and DFSynth, respectively.

VII. ACKNOWLEDGMENT

This research is sponsored in part by the NSFC Pro-
gram (No. 62022046, 92167101, U1911401, 62021002,
62192730), National Key Research and Development Project
(No. 2019YFB1706203, No2021QY0604) and MIIT Project
(Design of intelligent networked vehicle based on SOA central
control).

REFERENCES

[1] Z. Su, Z. Yu, D. Wang, Y. Yang, Y. Jiang, R. Wang, W. Chang, and
J. Sun, “Hcg: Optimizing embedded code generation of simulink with
simd instruction synthesis,” in 2022 59th ACM/IEEE Design Automation
Conference (DAC). ACM, 2022.

[2] F. Pasic, “Model-driven development of condition monitoring software,”
in Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Pro-
ceedings. ACM, 2018, pp. 162–167.

[3] F. Rademacher, J. Sorgalla, S. Sachweh, and A. Zündorf, “A model-
driven workflow for distributed microservice development,” in Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.
ACM, 2019, pp. 1260–1262.

[4] H. Ergin, W. Shi, H. D. Nurue, and J. Gray, “A model-driven alternative
to programming in blocks using rule-based transformations,” in Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, ser. MODELS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 377–383.

[5] T. Z. Asici, B. Karaduman, R. Eslampanah, M. Challenger, J. Denil,
and H. Vangheluwe, “Applying model driven engineering techniques to
the development of contiki-based iot systems,” in Proceedings of the 1st
International Workshop on Software Engineering Research & Practices
for the Internet of Things. IEEE Press, 2019, pp. 25–32.

[6] Simulink and Matlab, Simulink Documentation. [Online]. Available:
https://www.mathworks.com/help/simulink/index.html

[7] C. M. Sosa-Reyna, E. Tello-Leal, and D. Lara-Alabazares, “Methodol-
ogy for the model-driven development of service oriented iot applica-
tions,” Journal of Systems Architecture, vol. 90, pp. 15–22, 2018.

[8] Simulink and Matlab, Simulink Documentation. [Online]. Available:
https://www.mathworks.com/solutions/embedded-code-generation.html

[9] Z. Su, D. Wang, Y. Yang, Y. Jiang, W. Chang, L. Fang, W. Li, and
J. Sun, “Code synthesis for dataflow based embedded software design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2021.

[10] M. Frigo and S. G. Johnson, “Fftw: An adaptive software architecture
for the fft,” in Proceedings of the 1998 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), vol. 3. IEEE, 1998, pp. 1381–1384.

[11] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing matrix
multiply using phipac: a portable, high-performance, ansi c coding
methodology,” in ACM International Conference on Supercomputing
25th Anniversary Volume, 1997, pp. 253–260.

[12] A. Developer, “Arm neon technology.” [Online]. Available: https:
//developer.arm.com/architectures/instruction-sets/simd-isas/neon

[13] I. Developer, “Intel® intrinsics guide,” 2021. [Online]. Available: https:
//www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

[14] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1990.

[15] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,” in
Readings in Hardware/Software Co-Design, ser. Systems on Silicon,
G. De Micheli, R. Ernst, and W. Wolf, Eds. San Francisco: Morgan
Kaufmann, 2002, pp. 527–543.

[16] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system
design,” Journal of Circuits, Systems, and Computers, vol. 12, no. 03,
pp. 261–303, 2003.

[17] G. Berry, “Scade: Synchronous design and validation of embedded
control software,” in Next Generation Design and Verification Method-
ologies for Distributed Embedded Control Systems. Springer, 2007, pp.
19–33.

[18] G. Zhou, M.-K. Leung, and E. A. Lee, “A code generation framework
for actor-oriented models with partial evaluation,” in International
Conference on Embedded Software and Systems. Springer, 2007, pp.
193–206.

[19] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and E. A. Lee, “Compo-
sitionality in synchronous data flow: Modular code generation from
hierarchical sdf graphs,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 12, no. 3, pp. 1–26, 2013.

[20] T. Bress, Effective LabVIEW Programming:(* new file uploaded
02/19/15). Nts Press, 2013.

[21] K. Jahed and J. Dingel, “Enabling model-driven software development
tools for the internet of things,” in Proceedings of the 11th International
Workshop on Modelling in Software Engineerings. IEEE Press, 2019,
pp. 93–99.

[22] Y. Jiang, H. Song, Y. Yang, H. Liu, M. Gu, Y. Guan, J. Sun, and
L. Sha, “Dependable model-driven development of cps: From stateflow
simulation to verified implementation,” ACM Transactions on Cyber-
Physical Systems, vol. 3, no. 1, p. 12, 2018.

[23] Y. Jiang, H. Zhang, H. Zhang, H. Liu, X. Song, M. Gu, and J. Sun,
“Design of mixed synchronous/asynchronous systems with multiple
clocks,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 8, pp. 2220–2232, 2015.

[24] Y. Jiang, H. Zhang, H. Zhang, X. Zhao, H. Liu, C. Sun, X. Song, M. Gu,
and J. Sun, “Tsmart-galsblock: A toolkit for modeling, validation,
and synthesis of multi-clocked embedded systems,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 711–714.



12

[25] Y. Jiang, H. Song, H. Kong, R. Wang, and L. Sha, “Safety-assured
model-driven design of the multifunction vehicle bus controller,” IEEE
Transactions on Intelligent Transportation Systems, 2017.

[26] V. I. GmbH, DaVinci Developer. [Online]. Available: https://www.
vector.com/us/en-us/products/solutions/autosar-classic/

[27] D. A. Adams, “A computation model with data flow sequencing.”
Stanford University, 1969.

[28] H. Hanselmann, U. Kiffmeier, L. Koster, M. Meyer, and A. Rukgauer,
“Production quality code generation from simulink block diagrams,” in
Proceedings of the 1999 IEEE International Symposium on Computer
Aided Control System Design. IEEE, 1999, pp. 213–218.

[29] H. Bourbouh, P.-L. Garoche, T. Loquen, É. Noulard, and C. Pagetti, “Co-
cosim, a code generation framework for control/command applications
an overview of cocosim for multi-periodic discrete simulink models,” in
10th European Congress on Embedded Real Time Software and Systems
(ERTS 2020), 2020.

[30] T. Miyazaki and E. A. Lee, “Code generation by using integer-controlled
dataflow graph,” in 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1. IEEE, 1997, pp. 703–706.

[31] H. Zhang, Y. Jiang, H. Liu, M. Gu, and J. Sun, “Tsmart-bipex: An
integrated graphical design toolkit for software systems.” in D&P@
MoDELS, 2016, pp. 32–39.

[32] Z. Su, D. Wang, Y. Yang, Z. Yu, W. Chang, W. Li, A. Cui, Y. Jiang, and
J. Sun, “Mdd: A unified model-driven design framework for embedded
control software,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[33] P. Erdös and G. Szekeres, “A combinatorial problem in geometry,”
Compositio mathematica, vol. 2, pp. 463–470, 1935.

[34] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The
maximum clique problem,” in Handbook of combinatorial optimization.
Springer, 1999, pp. 1–74.

[35] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of the ACM, vol. 16, no. 9, pp.
575–577, 1973.

[36] G. team, Auto-vectorization in GCC. [Online]. Available: https:
//gcc.gnu.org/projects/tree-ssa/vectorization.html

[37] R. Allen and K. Kennedy, Optimizing compilers for modern architec-
tures: a dependence-based approach. Taylor & Francis US, 2002.

[38] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism
with multimedia instruction sets,” Acm Sigplan Notices, vol. 35, no. 5,
pp. 145–156, 2000.

[39] V. Porpodas, “Supergraph-slp auto-vectorization,” in 2017 26th Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, 2017, pp. 330–342.

[40] J. G. Feng, Y. P. He, and Q. M. Tao, “Evaluation of compilers’ capability
of automatic vectorization based on source code analysis,” Scientific
Programming, vol. 2021, 2021.

[41] S. Nagaraju Mekala, “An evaluation of vectorizing compilers,” evalua-
tion, vol. 3, no. 4, pp. 1298–1311, 2013.


