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Abstract— Fuzzing is increasingly used in industrial settings
for vulnerability detection due to its scalability and effectiveness.
Libraries require driver programs to feed the fuzzer-generated
inputs into library-provided interfaces. Writing such drivers
manually is tedious and error-prone, thus greatly hindering
the widespread use of fuzzing in practical situations. Previous
attempts at automatic driver synthesis perform static analysis on
the libraries and their consumers. However, a lack of dynamic
object usage information renders them ineffective at generating
interface function calls with correct parameters and meaningful
sequences. This severely limits fuzzing’s bug-finding capabilities
and can produce faulty drivers.

In this paper, we propose DAISY, a driver synthesis framework,
which extracts dynamic object usage sequences of library con-
sumers to synthesize significantly more effective drivers. DAISY
uses the following two steps to synthesize a fuzz driver for a li-
brary. First, it models each object’s behaviors into an object usage
sequence during the execution of its consumers. Next, it merges
all the extracted sequences and constructs a series of interface
calls with valid object usages based on the merged sequence. We
implemented DAISY and evaluated its effectiveness on real-world
libraries selected from both the Android Open Source Project
(AOSP) and Google’s FuzzBench. DAISY’s synthesized drivers
significantly outperform drivers produced by other state-of-the-
art fuzz driver synthesizers. In addition, on applying DAISY to
the latest versions of those extensively-fuzzed real-world libraries
of the benchmark, e.g. libaom and freetype2, we also found 9
previously-unknown bugs with 3 CVEs assigned.

I. INTRODUCTION

Fuzzing is a popular and efficient technique widely used
in vulnerability detection. Thousands of bugs in diverse areas
have already been discovered by various fuzzers [1], [2], [3],
[4], [5], [6]. Fuzzers test programs by feeding programs or
libraries a large number of generated inputs to trigger bugs.
As it is a dynamic testing technique, testers need to have
an executable program to feed fuzzer-generated inputs. For
libraries that do not have executable programs available, testers
need to construct a fuzz driver to act as an entry function that
feeds fuzzer-generated inputs into interfaces of target libraries.

Although fuzzing has made significant progress, its effec-
tiveness relies heavily on the quality and diversity of fuzz
drivers. Unfortunately, writing fuzz drivers is often tedious
and labor-consuming while its quality is highly dependent on
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the writer’s prior knowledge and experience with the relevant
libraries. Writing high-quality drivers requires a thorough
understanding of the library’s APIs to organize them into an
effective fuzz driver. Usually, high-quality fuzz drivers are
lengthy and functionally complex. For example, the official
fuzz driver of freetype2 takes more than 400 lines of code to
build the context of its core interface. These issues currently
hinder fuzzing’s usability and effectiveness. Therefore, writing
or generating a high-quality fuzz driver is a hot topic.

There have been a few attempts at generating fuzz drivers
automatically. These methods can be categorized into two
types based on how they extract potential interface informa-
tion, i.e. library-based synthesis such as FUDGE [7] and
IntelliGen [8], and consumer-based synthesis such as Fuz-
zGen [9]. The former approach extracts interesting interface
calls to the target library and extracts their relevant snippets to
synthesize drivers, but experiences difficulties in producing ef-
fective call sequences due to insufficient runtime information.
In contrast, the latter approach only performs static analysis
on the consumer’s code base, and thus may fail to capture
dynamic usage information of all objects. Specifically, static-
based synthesis methods experience difficulties as they are less
likely to determine valid calling chains that contain a usage
pattern of certain objects, partially due to indirect function
calls and ambiguous type information. For instance, inter-
procedural data flows would be ignored by static synthesizers
in the following example. Listing 1 presents a unit test segment
from libxml2, an XML parser library widely used in industrial
systems. reader 1 and reader 2 are two reader objects of the
same type. They are passed to interface functions of libxml2
in a certain order. To synthesize a driver, static consumer-
based approaches abstract the argument dependencies based
on their types and use the same interface sequence as this unit
test. However, in this example, these two variables with the
same type can fool the synthesizer into generating a buggy
driver. Specifically, the static synthesizer observes that the
reader object can be used in the order of create → use →
free → use. Therefore the driver contains a use-after-free bug
and is thus faulty.

To overcome this issue, we need to extract object usage
sequences dynamically and construct drivers containing a valid
sequence, where we encounter the following challenges:

• Effective object usage information collection. Conven-



1 /* interfaces exported by the library itself*/
2 struct xmlTextReaderPtr {};
3 xmlTextReaderPtr xmlNewTextReaderFilename(
4 const char*);
5 int xmlTextReaderRead(xmlTextReaderPtr);
6 void xmlTextReaderNodeType(xmlTextReaderPtr);
7 void xmlFreeTextReader(xmlTextReaderPtr);
8
9 static void handleFile(

10 const char *filename_1, const char *filename_2
11 ) {
12 xmlTextReaderPtr reader_1 =
13 xmlNewTextReaderFilename(filename_1);
14 xmlTextReaderPtr reader_2 =
15 xmlNewTextReaderFilename(filename_2);
16 int ret = xmlTextReaderRead(reader_1);
17 // ... ...
18 xmlTextReaderNodeType(reader_1);
19 xmlFreeTextReader(reader_1);
20 int ret = xmlTextReaderRead(reader_2);
21 // ... ...
22 xmlFreeTextReader(reader_2);
23 // ... ...
24 }

Listing 1 Code segment of a unit test from libxml2

tional static flow analysis cannot obtain implicit or inter-
procedural object usage and dependency information re-
liably. However, switching to dynamic analysis directly
raises concerns regarding its precision and overhead.
Therefore, performing high-precision dynamic object us-
age information collection in a cost-efficient way is
critical to the practicality of our approach.

• Driver synthesis with actual usage sequences. Syn-
thesized drivers should contain object usages reflecting
actual data usage information extracted from the library
consumer. However, the library consumer generally does
not contain any entries for fuzzer’s input. It is necessary to
propose a novel synthesis solution so that the synthesized
driver not only follows the object usage sequence from
real-world consumers but also properly bridges the gap
between the fuzzer’s input and the driver’s entry.

In this paper, we propose DAISY, a novel driver synthesis
framework for C/C++ projects, to make automated driver
synthesis practical and effective in industrial scenarios. Our
key insight is to model the sequence of each object’s behaviors,
including construction, utilization, and destruction (named
Object Usage Sequence, OUS), during the execution of
library consumers. Unlike static methods that conventional
synthesizers use, such an object usage sequence can preserve
the original valid usage sequence and distinguish different
objects even if they have the same type. To achieve this goal,
DAISY first performs instrumentation on the consumers of
the target library and constructs the OUS during execution.
Then, DAISY merges all OUSes into one and synthesizes
a fuzz driver based on the sequence model. Additionally, a
runtime library is supported to help DAISY intercept object
constructions in the driver so that the fuzzer’s input can be
dispatched into these objects. We implement DAISY based on
the LLVM compiler framework. DAISY is made up of two
LLVM passes and a runtime support library. One pass aims to

perform instrumentation on the library consumer to model the
OUS. The other pass is used to merge multiple OUSes into
one and synthesize a fuzz driver according to the sequence
model. The runtime library is designed to determine how to
assign values for all objects allocated by the fuzz driver based
on the fuzzer’s input.

We evaluate DAISY’s effectiveness on real-world programs
from Google’s FuzzBench and Android Open Source Project
(AOSP). On average, DAISY covered 1.39-2.93 times more
basic blocks over other state-of-the-art fuzz driver synthesiz-
ers, i.e., FuzzGen and IntelliGen, and detected 9 previous-
unknown bugs with 3 CVEs assigned. In summary, we make
the following contributions:

• We propose a fuzz driver generation framework DAISY
which dynamically constructs the OUS from the library
consumers and synthesizes fuzz drivers according to the
acquired information.

• We implement DAISY on the top of the LLVM compiler
infrastructure, and open-source the relevant artifacts on
github [10]. DAISY’s implementation consists of se-
quence extraction and driver synthesis modules.

• We evaluate DAISY on FuzzBench and AOSP against
state-of-the-art driver synthesizers. DAISY detected 9
previous-unknown bugs with 3 CVEs assigned. The re-
sults show that DAISY is able to synthesize practical and
effective fuzz drivers in industrial scenarios.

The rest of the paper is organized as follows: Section II
introduces the background and related work. Section III de-
scribes the motivation behind DAISY. Section IV outlines
DAISY’s design, including object usage sequence modeling
and driver synthesis. Section V evaluates DAISY on AOSP and
FuzzBench and compares its effectiveness against FuzzGen,
IntelliGen, and expert-written drivers. Section VI discusses the
problems we met and the lessons we learned.

II. RELATED WORK

Fuzzing in real-world practice. Fuzzing is an automated
program vulnerability detection technique. Many fuzzers have
been developed with varying degrees of success, including
AFL [11], Honggfuzz [12], libFuzzer [13], etc. Efforts to
combine the power of multiple fuzzers have achieved sub-
stantial improvement over using a single fuzzer. For instance,
Google’s OSS-Fuzz [1] combines AFL and libFuzzer to fuzz
open-source programs and has discovered thousands of bugs
over a period of around 5 years. Fuzzers generally aim to
explore as many program states as possible, since a bug
cannot be triggered unless its location can be visited through
an execution path. As the number of program states can be
infinite, researchers and developers have devised a number of
techniques [14], [15], [16], [17], [18], [19], [20] that allow
fuzzers to cover more code and trigger more bugs. Due to
its scalability, fuzzing has been successfully applied to many
critical areas [21], [22], [23], [24]. To fuzz a library, testers
write a fuzz driver to pass the fuzzy input to the library. Hence,
a fuzzer’s effectiveness at testing libraries greatly depends on
the driver programs’ quality.
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Fuzz driver synthesis frameworks. Automatically syn-
thesizing a high-quality fuzz driver is a hot topic in the
fuzzing domain, and there are a few attempts at automated fuzz
driver synthesis. These synthesizers can be divided into two
categories, i.e. library-based driver synthesis and consumer-
based driver synthesis. FUDGE [7] and IntelliGen [8] are two
library-based driver synthesis frameworks. FUDGE scans the
source code of the library, identifies interface calls containing
arguments that take data buffers, and extracts the relevant code
segments to synthesize a fuzz driver. IntelliGen directly calls
an API function based on a heuristic ranking and assigns
values to the arguments using a lazy-store technique. In
contrast, FuzzGen [9] statically builds a dependence graph
by analyzing library consumers and uses this information to
construct interface invocations in the synthesized fuzz drivers.
By utilizing static consumer information, FuzzGen improves
upon FUDGE and allows fuzzers to test more code in the target
libraries. APICraft [25] and GraphFuzz [26] are the other two
fuzz driver synthesis frameworks. The former primarily aims
to generate fuzz drivers for closed-source SDKs on Apple’s
MacOS platform, and the latter produces a fuzz driver by con-
structing the schema of the target library and mutating the data
flow contained by the schema. Unlike these static approaches,
DAISY focuses on modeling each object’s behaviors during the
execution of library consumers, and further facilitating fuzz
driver synthesis.

Unit test generation tools. These tools automatically gen-
erate interface invocations with predefined static values in
the form of unit tests. For instance, Randoop [27] generates
high-quality unit tests by merging previous-generated inputs,
Testful [28] provides test cases for stateful systems by reusing
the same states, Evosuite [29] hybrids different test cases to
achieve high code coverage, and Tautoko [30] dynamically
mines type-state models from existing valid sequences of
method calls to generate unit tests. The main difference
between DAISY and the unit test generation works are the
scopes and goals. In terms of scopes, the fuzz drivers generated
by DAISY allow fuzzers to explore as much of the program’s
state as possible to discover vulnerabilities, while unit tests
generated by these frameworks allow developers to detect
functional bugs by comparing library behaviors with manually
defined oracles. In terms of goals, DAISY generates invocation
sequences based on off-the-shelf library consumers, while unit
test generation works generate invocation sequences based on
try-and-error evolution.

III. MOTIVATION

Current driver synthesizers construct fuzz driver programs
based on interface signatures or library consumers. However,
their usability is limited in real-world scenarios. Using the
example presented in the introduction, Listing 1 is a segment
from a unit test in libxml2, an XML parser library widely used
in industrial settings. The function declarations in Lines 2-8
are part of the interface signatures exported by libxml2, while
the function in Lines 11-27 is a unit test that invokes some
interfaces to test their functionality. xmlNewTextReaderFile-

name() opens a file and returns a pointer to a reader object,
xmlTextReaderRead() and xmlTextReaderNodeType() are two
interfaces that take a pointer to a reader object as argument
and from which read an XML object, xmlFreeTextReader()
takes a pointer to a reader object as argument and frees all the
corresponding object values.

Fig. 1: A demonstration of object usage sequence for the mo-
tivating example. To synthesize a quality fuzz driver, DAISY
first records all objects’ usage based on the library consumer
and then follows the usage sequence to build a driver skeleton.

Although there are only a few exported interfaces and the
unit test is quite straightforward, existing synthesizers fail
to synthesize an effective fuzz driver. For instance, FUDGE
scans all the library’s interfaces and extracts the interfaces
which have the argument list (const char*, size t) as the
entry functions. Unfortunately, there are no such interface
functions in this library, thus FUDGE is incapable of syn-
thesizing any drivers. IntelliGen synthesizes a driver in which
a series of variables are initialized and then passed to a single
library interface (e.g. xmlTextReaderRead()) as arguments.
However, these variables are initialized as random values
generated by fuzzers, and thus can hardly bypass shallow
sanity checks due to the lack of valid initialization. In this
example, xmlTextReaderRead() would immediately return an
error code after the input violates preliminary sanity checks.
FuzzGen extracts a typed-based Abstract API Dependence
Graph from the library’s unit tests and synthesizes a sequence
of interface invocations. However, fuzzing a driver synthesized
by FuzzGen will result in many false positives since it only
focuses on type-level dependence relations instead of object-
level usage sequences. In this example, FuzzGen generates a
sequence similar to the following invocation sequence:
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Fig. 2: The overall architecture design of DAISY, which operates in two stages. First, it produces the Object Usage Sequence
by performing instrumentation and executing library consumers to extract relevant usage information. Then, it leverages the
sequences to synthesize a fuzz driver. The Input Dispatcher transfers the inputs generated by the fuzzer to arguments used by
library interface functions at runtime.

var = xmlNewTextReaderFilename(...);
xmlFreeTextReader(var);
xmlTextReaderRead(var);

which means that an xmlTextReaderPtr object is created,
destroyed, and then used again, resulting in a use-after-free
bug. ] Such a driver will lead to false positives and reduce a
fuzzer’s effectiveness.

According to our observation, the root cause of the ineffec-
tive synthesis methods is that they do not take into account
Object Usage Sequences. Previous work generally generates
drivers that break existing object usage patterns to fill the
contents of selected variables with the fuzzer’s input. Such an
approach can conveniently overcome the differences between
the fuzzer’s input and the driver’s input variables. However,
library consumers (i.e. unit tests in this example) often follow a
semantic pattern to construct and use objects as well as invoke
interfaces. Breaking this pattern will lower the effectiveness of
synthesized fuzzers and greatly impact fuzzing’s performance.
We use the term Object Usage Sequence to refer to the
sequence of each object’s behaviors, including construction,
utilization, and destruction.

In this paper, we propose DAISY to make fuzz driver
synthesis practical in industrial scenarios. Fig. 1 demonstrates
how it operates on the motivating example. First, it executes
the library consumer and constructs object usage sequences
for each object. For each object, DAISY tracks its interface-
level data usage. Take r1 as an example, it is first created
in interface 1⃝, then used in interfaces 2⃝, 3⃝, and 4⃝ succes-
sively, and finally implicitly freed in interface 4⃝. We illustrate
DAISY’s detailed design of object usage sequence modeling in
Section IV-A. Next, DAISY synthesizes a fuzz driver following
the sequence model. To bridge the gap between the fuzzer’s
input and the driver’s used values, all the sources of object
allocation are intercepted by DAISY’s runtime library. In these
interceptors, DAISY assigns a part of the input’s buffer to
the object allocation. The detailed design is illustrated in
Section IV-B.

IV. DAISY DESIGN

In this section, we describe the design of DAISY in depth.
Fig. 2 shows the overall architecture design of DAISY. DAISY
synthesizes fuzz drivers in a two-step procedure. (1) In the first
step, the Consumer Instrumentor performs instrumentation on
the consumer programs at every construction, destruction, and
utilization position. Then, the OUS Extractor dynamically
extracts the OUSes during the execution of the library con-
sumer programs. (2) In the second step, the Sequence Analyzer
merges all OUSes extracted by the OUS Extractor into a
single OUS, and produces a fuzz driver skeleton using the
information recovered from the merged OUS. Then, the Input
Dispatcher intercepts all objects’ construction and fills the
relevant values with contents taken from the input’s buffer
to bridge the gap between the fuzzer’s inputs and the driver’s
utilized objects. After the two-step procedure, DAISY produces
a fuzz driver that can be used as a fuzzing target.

A. Object Usage Sequence Modeling

During OUS modeling, DAISY first performs instrumenta-
tion on the target library’s consumers through the Consumer
Instrumentor component. Then DAISY dynamically extracts
object usage sequences through the OUS extractor component.

Consumer Instrumentor. The Consumer Instrumentor per-
forms instrumentation of each object’s construction, destruc-
tion, and utilization behavior in the library consumers. Specif-
ically, a command cmd will be instrumented if it matches one
of the following patterns:

• Construction patterns.
– cmd defines a local variable, which allocates a memory

block on the stack.
– cmd calls malloc() to get a pointer pointing to a

memory chunk on the heap.
– cmd calls fopen() to obtain a file object.
– cmd dereferences a pointer, which points to a non-

recorded file object or memory chunk.
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• Destruction patterns.
– cmd returns from a function, which automatically de-

allocates all local variables defined in this function.
– cmd calls free() to free a buffer chunk on the heap.
– cmd calls fclose() to close a file.

• Utilization patterns.
– cmd stores a value to a tracked object.
– cmd calls a function defined in the target library.

Note that DAISY only tracks interface functions defined in
the target library’s archive file (.a) or shared object file (.so), so
functions from external libraries, e.g. printf(), will be omitted.

OUS Extractor. After performing instrumentation on con-
sumers, DAISY executes them and uses the OUS Extractor to
extract OUSes. Algorithm 1 shows the details of how the OUS
Extractor works during a consumer’s execution.

Algorithm 1: Object Usage Sequence Extractor
Input: The consumer’s execution trace trace
Output: The object usage sequence OUS extracted

from the consumer
1 OUS = emptyList();
2 pool = emptySet();
3 foreach command cmd in trace do
4 if cmd matches construction patterns then
5 obj = cmd.getObject();
6 pool.add(obj);
7 OUS.add(obj);
8 else if cmd matches destruction patterns then
9 obj = cmd.getObject();

10 pool.remove(obj);
11 else if cmd matches utilization patterns then
12 OUS.addUtilization(cmd, pool);
13 end
14 end
15 return OUS;

The algorithm takes a consumer program’s execution trace
trace as the input and returns the extracted object usage
sequence OUS. In line 3, trace is all LLVM-IR instructions
executed by the consumer, and cmd is one instruction in trace.
DAISY maintains an object pool pool, which assigns each
object to a unique ID on its construction in line 6. When a
new object is constructed, DAISY adds it to pool and dumps
it into OUS as shown in lines 5-7. DAISY removes an object
from pool when it is freed as provided in lines 8-10, but
does not record the object-destruction operation in OUS. All
objects will be freed at the end of the fuzz driver, as shown in
Section IV-B. When the consumer utilizes an object, DAISY
tracks the utilization command and dumps it into OUS in
lines 11-12. Two kinds of utilization are tracked, i.e. (1) store
operations and (2) function invocations. On detecting a store
operation that stores a pointer value to any address, if the target
address points to a tracked object, then DAISY appends the
storage operation to OUS. When meeting a function invocation
operation, if it calls a function defined in the target library,

DAISY then appends the invocation operation to OUS. After
the consumer program’s execution, OUS is extracted from the
target consumer and emitted for the next step.

B. Driver Synthesis

After extracting OUSes as shown in Section IV-A, DAISY’s
Sequence Analyzer reduces and combines the OUSes, then
constructs a driver skeleton according to the relevant informa-
tion. Next, DAISY’s Input Dispatcher assigns variables’ values
extracted from the fuzzer’s inputs.

Sequence Analyzer. Since a library may contain multiple
consumer programs, the Sequence Analyzer first reduces every
origin OUS and merges them, then constructs a skeleton driver
program according to the merged OUS.

Reducing an OUS. The consumer programs of the target
library may contain code irrelevant to driver synthesis, such
as code performing command line input parsing or logging,
thus their corresponding object usage information should be
removed from the OUS. To remove this irrelevant information,
DAISY first scans the raw OUS, marks all function calls as
useful, and puts them into a FIFO queue. Then, DAISY picks
an entry from the queue, marks any other unmarked entry
which refers to at least one object of the selected entry as
useful, and puts them into the same queue. DAISY repeats this
progress until the queue is empty, thus any entry which is not
marked as useful should be removed from the original OUS.
After reducing the original sequence, DAISY joins all nodes
that represent the same function call together. For instance,
assume that the entries A and B call the same function with the
same arguments, then DAISY replaces all edges from or to B
with edges from or to A, and erases B from the sequence. This
process also makes all function call records unique, facilitating
convenient merging with another OUS.

Merging multiple OUSes. Instead of synthesizing many fuzz
drivers from individual OUSes, DAISY merges all the OUSes
and generates one fuzz driver from the merged OUS. DAISY
merges two OUSes by grafting the same function call records,
where the detail is shown in Algorithm 2.

Specifically, DAISY uses a greedy algorithm to find com-
patible function call records between two OUSes. DAISY first
provides a function callMatch() to determine if two function
call records are compatible. Two function call records can
be compatible only when they have the same function callee,
so callMatch returns FALSE immediately if the two function
call records invoke different functions, as shown in line 2-
3. In addition, two matched function call records must also
have bijective arguments. Therefore, for each corresponding
argument object pair (obj1, obj2) in the two function call
records, if an object does not match the other one, then
callMatch() returns FALSE, as shown in lines 6-8. The match
in line 6 refers to if two objects obj1 and obj2 can be
represented by one object in the merged OUS. To determine
this, DAISY logs all object pairs ever matched. If they ever
match each other, then they always will. Else if one of obj1 and
obj2 ever matches another object obj3, then obj1 and obj2 are
not matched. Otherwise, DAISY marks that obj1 and obj2 may
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Algorithm 2: Merging two OUSes.
Input: Two object usage sequences OUS1 and OUS2.
Output: The merged sequence

1 Function callMatch(call1, call2):
2 if call1.func != call2.func then
3 return FALSE;
4 end
5 foreach (obj1, obj2) in call1.args · call2.args do
6 if obj1 does NOT match obj2 then
7 return FALSE;
8 end
9 end

10 updateMatchingStates();
11 return TRUE;
12 end
13 foreach calls (call1, call2) in OUS1 × OUS2 do
14 if callMatch(call1, call2) then
15 merge(call1, call2);
16 end
17 end

match each other. If there is no contradiction after judging all
object pairs in line 9, then DAISY logs all matched object pairs
in line 10, and function callMatch returns TRUE in line 11.
Else, function callMatch returns FALSE in line 7. For each call
record pair (rec1, rec2) in a full permutation of two sequences
(OUS1, OUS2), if callMatch(rec1, rec2) returns TRUE (line
14), which means rec1 and rec2 are compatible, DAISY merges
the two function calls to connect the two OUSes in line 15.

Driver Synthesis. Once getting the merged OUS, DAISY
constructs a fuzz driver’s skeleton using the information re-
trieved from it. The details are shown in Algorithm 3. The
Sequence Analyzer maintains an object pool to maintain all
constructed objects. When retrieving an object from the OUS,
DAISY adds an instruction to allocate a buffer or open a file
according to the object’s type, then adds the object into the
pool as shown in lines 4-7. The utilization operations can be
divided into two types: (1) store operations and (2) function
invocations, as mentioned in Section IV-A. For each utilization
operation, DAISY accesses its operands and processes them
based on their types. If an operand is a pointer, then DAISY
will retrieve the underlying object and fill the operand position
with it. If an operand is a built-in type (e.g. int or float), then
the operand position will be dispatched with a chunk of the
fuzzer’s generated input. Finally, DAISY destructs all objects
to avoid memory leaks, as shown in lines 13-15.

Input Dispatcher. The Sequence Analyzer generates a fuzz
driver skeleton ready to run. However, to execute the fuzz
driver, we also need to assign values for all objects at runtime.
The Input Dispatcher is designed to assign values for objects
based on the generated input. This process should be both
random and stable. On the one hand, the dispatcher should
accept the fuzzer’s input, in which the value is randomized.
On the other hand, the dispatch strategy should be stable

for bug reproduction. The Input Dispatcher first records the
buffer provided by the fuzz engine at the beginning of a
fuzzing round. When a memory chunk is constructed, the Input
Dispatcher reads the same number of bytes as the chunk’s size
and copies them to the chunk. When a new file is opened, the
Input Dispatcher reads a 2-byte number as the size of the file,
then reads the same number of bytes and saves them to the
file. The input buffer provided by the fuzz engine may be not
enough to provide all the data, hence the Input Dispatcher
loops back to the front of the buffer upon reaching its end.

Algorithm 3: Synthesizing a Fuzz Driver.
Input: The merged object usage sequence OUS.
Output: The fuzz driver driver

1 pool = emptySet();
2 driver = emptyDriver();
3 foreach record rec in OUS do
4 if rec is construction then
5 obj = rec.retrieveObject();
6 driver.addConstrutInstr(obj);
7 pool.add(obj);
8 else if rec is utilization then
9 util = rec.retrieveUtilization();

10 driver.addUtilizeInstr(util);
11 end
12 end
13 foreach object obj in pool do
14 driver.addDestructInstr(obj);
15 end
16 pool.clear();
17 return driver;

C. DAISY Implementation

We implement DAISY using the LLVM compiler infras-
tructure will open-source it. As shown in Section IV, DAISY
contains two main modules. One is the OUS Constructor, the
other is the Driver Synthesizer, both of them are implemented
as LLVM passes. Though most C++ programs call destructors
implicitly in the source code, they are explicitly called in the
LLVM-IR by a call-instruction. Hence DAISY can capture
them on extracting OUS. When synthesizing fuzz drivers,
DAISY calls the destructors explicitly by their mangled name.
DAISY emits the driver as C++ code, benefiting testers in ver-
ifying and modifying the generated driver program manually.

During a single fuzzing round, DAISY maintains a hash set
to record all allocated objects. It records any memory chunk
on construction and removes it on destruction. After finishing
a round of fuzzing, DAISY frees all allocated memory chunks
in the hash set and closes all opened file descriptors.

V. EVALUATION

In this section, we evaluate the effectiveness of DAISY.
We compare DAISY with existing fuzz driver synthesizers
based on a variety of metrics to demonstrate the DAISY’s
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effectiveness. Moreover, we present several case studies to
give a concrete demonstration of how it allows fuzzers to find
unknown bugs.

A. Evaluation Setup

Experiment environment. We evaluate DAISY on a 64-bit
machine with 128 cores (AMD EPYC 7742) and 500GiB of
RAM running Linux 5.4.128 for the following experiments.

Target libraries. We conduct experiments on two well-
known datasets for fuzzing: the Android Open Source Project
(AOSP) and Google’s FuzzBench [31]. Regarding FuzzBench,
we select every program included in both Google’s fuzzer-test-
suite and FuzzBench as they have been carefully picked for
evaluating fuzzing performance. All libraries are widely used
in industry settings and have been extensively tested using
OSS-Fuzz[1]. We use unit test cases, system test cases, and
real-world applications from the code base of each library as
its consumers.

Evaluation metrics. We use basic block coverage to eval-
uate the effectiveness of synthesis techniques. The coverage
is collected by llvm-cov [32], a common measurement tool
for evaluating fuzzing performance. We follow the fuzzing
evaluation guidelines outlined by Klees et al. [33] to conduct
each experiment over a period of 24 hours and repeat five
times, which is an experiment setting widely used in fuzzing
performance evaluation [31], [34], [35], [36], [37], [21], [38].

B. Overall Performance

TABLE I: Average basic block coverage on AOSP projects
in a 24-hour fuzzing campaign and repeating five times using
fuzz drivers generated by different techniques and written by
expert. Entries with “✓” represent that the p-value of coverage
between DAISY’s driver and the corresponding driver is less
than 0.05. “-” entries indicate that the synthesizer cannot
produce a valid driver program for the project. Entries marked
with ”*” represent the result from FuzzGen’s paper.

project DAISY FuzzGen IntelliGen Expert-Written

libaom 10771.2 4538* - 19741.4
libavc 609 4097* 775.4 (✓) 507.4 (✓)
libgsm 76 557* 1594.4 (✓) 391.2 (✓)
libhevc 10122 6037* 580.6 (✓) 14584.4
libmpeg2 2685.6 958* 381.4 (✓) 2790
libpng 643.8 - - 3455.4 (✓)
libopus 5505.8 2837* 95.2 (✓) 5439.4 (✓)
libvpx 1064.6 1840* 3269.6 (✓) 3299.4 (✓)
libxaac 13532 - 95.4 (✓) 12002.6
libxml2 5741.6 - 6108.4 11954.2 (✓)

Improvement - 1.39 2.93 -0.32

We compare DAISY against two state-of-the-art fuzz driver
synthesizers, FuzzGen and IntelliGen, on 10 external li-
braries selected from AOSP and 12 programs selected from
FuzzBench. The overall results are presented in Table I and
Table II. Due to the limitations of FuzzGen and IntelliGen,

TABLE II: Average basic block coverage on FuzzBench
projects in a 24-hour fuzzing campaign and repeating five
times using fuzz drivers generated by different techniques and
written by expert. Entries with “✓” represent that the p-value
of coverage between DAISY’s driver and the corresponding
driver is less than 0.05. “-” entries indicate that the synthesizer
cannot produce a valid driver program for the project.

project DAISY IntelliGen Expert-Written

boringssl 1012.8 - 2345.4 (✓)
freetype2 5407.6 - 12739.4 (✓)
harfbuzz 4400.8 4419.6 4595.8 (✓)
json 811.4 794 (✓) 903.8 (✓)
lcms 1573.2 376 (✓) 2811.2 (✓)
libarchive 2554 - 7704.8 (✓)
libjpeg 613.4 1215.8 (✓) 1092.4 (✓)
proj4 1382.4 76.4 (✓) 6909.2 (✓)
re2 3373.8 2381.8 (✓) 3501 (✓)
sqlite 3242.8 - 3141.4 (✓)
vorbis 146.4 108.2 (✓) 177.6
woff2 1835.6 - 1498

Improvement - 1.81 -0.44

some programs are incompatible and cannot be successfully
compiled. From the two tables, we can observe that:

Compared with FuzzGen, DAISY can generate driver
programs for a wider variety of libraries and achieves
better block coverage. Though we have thoroughly tried to
run FuzzGen on all tested projects, FuzzGen is ultimately
incompatible with all the projects of FuzzBench. This is
because FuzzGen requires a full-system sweep of library
consumer information, for instance, the entire AOSP codebase
for Android applications, to construct its dependence graph.
However, the projects in FuzzBench depend on glibc, and
thus extracting their dependence graphs is significantly more
difficult. Therefore, we present the original data from the
FuzzGen paper and calculate the corresponding basic block
coverage in Table I. In contrast, DAISY is much easier to adapt
to different libraries, as it only needs to conduct object usage
analysis on the consumer programs rather than a full-system
dependency analysis. As a result, DAISY can generate drivers
for a large number of libraries in both AOSP and FuzzBench,
where their performance reaches close to or surpasses expert-
written drivers in many instances, demonstrating its versatility
and effectiveness. Additionally, DAISY outperforms FuzzGen
in 4 out of the 7 projects FuzzGen is compatible with.

Compared with IntelliGen, DAISY can achieve better
block coverage. IntelliGen is a well-performing library-based
driver synthesizer, however, its lack of object usage informa-
tion results in synthesizing drivers that call interface functions
without properly initialized arguments, hindering its effective-
ness in covering more program logic code. Besides, IntelliGen
fails to generate fuzz drivers for some projects in FuzzBench,
because the main entry function of those projects requires
at least one function pointer argument, whose value cannot
be generated properly by IntelliGen. DAISY in contrast can
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derive such information through the object usage information
and perform parameter initialization, allowing fuzzers to pass
through sanity checks and cover more program logic code.

DAISY performs even better than the expert-written
drivers in some cases. Although DAISY mostly performs bet-
ter than the comparison synthesizers, it still performs behind
expert-written drivers on some projects. One possible reason
is that DAISY calls the interface functions with randomly
generated arguments, which may trigger bugs and make it
difficult to attain a high coverage. For instance, in freetype2,
DAISY detects a heap-buffer-overflow crash in FT New Face
with abnormal arguments, as we will further demonstrate
in Section V-C. Triggering this bug stops DAISY’s driver’s
fuzzing process, thus hindering its coverage progress. The
other reason is that the effectiveness of DAISY depends greatly
on the quality of library consumers. However, some consumers
in FuzzBench cannot provide informative object usage for
DAISY. The main shortage of expert-written drivers is that its
effectiveness depends on the prior knowledge and experience
of its writer. Besides, the off-the-shelf initial seeds are custom
for existing drivers. This makes drivers synthesized by DAISY
hardly take advantage of these initial seeds. In summary,
although DAISY cannot consistently outperform the expert-
written drivers, it is still better than other state-of-the-art driver
synthesis tools, no matter the number of compatible or the
driver’s basic block coverage.

C. Real-World Case Study

In this section, we introduce our practice of vulnerability
discoveries in six extensively-fuzzed real-world libraries. After
24-hour testing, DAISY found 9 previously-unknown bugs.
Three of them are assigned CVEs because of their severe
security consequences. Fuzz drivers generated by FuzzGen
and IntelliGen are both not able to find the CVEs in the
latest version of the project. The complexity of glibc pre-
vents FuzzGen from getting a complete dependence graph,
thus FuzzGen fails to detect the bugs. IntelliGen generates
a fuzz driver by calling a function and performs a “lazy-
store” operation for all its arguments. However, these CVEs all
require at most two function calls to trigger, hence IntelliGen is
not able to detect them. Table III shows the details of the bugs.
Notably, a developer commented ”too bad that the (previous)
fuzzer didn’t catch this, so thanks a lot for your report” when
fixing a bug reported by DAISY. Since these libraries have
been heavily tested for several years [1], we believe that the
result demonstrates DAISY is able to uncover bugs that expert-
written drivers miss.

We use freetype2 from Google’s FuzzBench and libaom
from the Android Open Source Project as examples to show
how DAISY synthesizes fuzz driver programs and how the
driver has the capability of discovering previously unknown
bugs. Both of these libraries are widely used in industrial
products, for instance, Android, Chrome, etc. After showing
the vulnerability detection capability of DAISY, we also inves-
tigate the effectiveness of DAISY’s OUS merging algorithm.

TABLE III: Previous-unknown Bugs detected by DAISY.

Project Bug Type Identifier

freetype2 Heap-Buffer-Overflow CVE-2022-27404
freetype2 SIGSEGV CVE-2022-27405
freetype2 SIGSEGV CVE-2022-27406
freetype2 Out-of-Memory Issue-1153

matio Out-of-Memory Issue-190
libaom Memory-Leak Issue-3334
libvpx Out-of-Memory Issue-1764

file SigABRT Issue-348
grok Memory-Leak Issue-314

1) Synthesizing a driver for freetype2: freetype2 is a soft-
ware font engine that is designed to be small, efficient, highly
customizable, and portable while capable of producing high-
quality output (glyph images).

To generate a fuzz driver for freetype2, DAISY utilizes two
consumers to synthesize a fuzz driver for freetype2. One is
test afm, which is included by freetype2 itself. The other is
an example program from freetype2’s website [39], named
ftsample. Listings 2 and 3 show the main logic of them.

1 int main(int argc, char **argv) {
2 FT_Library library;
3 FT_StreamRec stream;
4 FT_Error error = FT_Err_Ok;
5 AFM_FontInfoRec fi;
6 FT_Init_FreeType(&lib);
7 ...
8
9 if (error = FT_Stream_Open(&stream, argv[1]))

10 goto Exit;
11
12 stream.memory = library->memory;
13 if (error = parse_afm(library, &stream, &fi))
14 goto Exit;
15 ...
16 FT_Stream_Close(&stream);
17
18 Exit:
19 FT_Done_FreeType(library);
20 return error;
21 }

Listing 2 The consumer test afm.c for freetype2

1 int main (int argc, char** argv) {
2 FT_Library lib;
3 if (FT_Init_FreeType(&lib))
4 return 1;
5
6 FT_Face face;
7 if (FT_New_Face(lib, argv[1], 0, &face))
8 return 1;
9

10 FT_UInt idx = FT_Get_Char_Index(face, 0);
11 if (FT_Load_Glyph(face, idx, 0))
12 return 1;
13
14 if (FT_Render_Glyph(face->glyph, 0))
15 return 1;
16
17 FT_Done_FreeType(lib);
18 }

Listing 3 The consumer ftsample.c for freetype2
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1 (Allocate) library, stream, error, fi, face, idx;
2 (Call) FT_Init_FreeType(&library);
3 [Branch 1 Start]
4 (Call) FT_Stream_Open(&stream, _0);
5 (Store) stream.memory = library->memory;
6 (Call) parse_afm(library, &stream, &fi);
7 (Call) FT_Stream_Close(&stream);
8 [Branch 2 Start]
9 (Call) FT_New_Face(library, _1, _2, &face);

10 (Call) idx = FT_Get_Char_Index(face, _3);
11 (Call) FT_Load_Glyph(face, idx, _4);
12 (Call) FT_Render_Glyph(face->glyph, 0);
13 [Branch 1 End]
14 [Branch 2 End]
15 (Call) FT_Done_FreeType(library);

Listing 4 The merged OUS for freetype2

1 #0 sfnt_init_face (stream=..., face=...,
face_instance_index=-16711680)

2 #1 in tt_face_init (stream=..., ttface=...,
face_index=-16711680, num_params=0, params=0x0)

3 #2 in open_face (driver=..., astream=...,
external_stream=0 ’\000’, face_index
=71776119044505600, num_params=0, params=0x0,
aface=...)

4 #3 in ft_open_face_internal (library=..., args=...,
face_index=71776119044505600, aface=...,
test_mac_fonts=0 ’\000’)

5 #4 in FT_New_Face (library=..., pathname=...,
face_index=71776119044505600, aface=...)

6 #5 in LLVMFuzzerTestOneInput (data=..., size=17)

Listing 5 The heap-buffer-overflow in freetype2 detected by
DAISY

Both consumers call the function FT Init FreeType() to
initialize an FT Library type context variable. The main
difference is how they use the variable: test afm uses it to
read and parse an afm file, while ftsample uses it to create a
font face variable and render its glyph. At last, both of the two
consumers call FT Done FreeType() to free the variable. After
executing the two consumers, DAISY merges the extracted
OUS, which is shown in Listing 4. When merging the two
OUSes, DAISY finds that they both call FT Init FreeType()
initially and FT Done FreeType() finally, with the argu-
ments passed to the two functions being identical. Therefore,
DAISY links the records which call FT Init FreeType() or
FT Done FreeType() together. This merged OUS indicates
that FT Init FreeType() must be called at the beginning of the
driver, and FT Done FreeType() must be called at the end.

Based on the merged OUS, DAISY generates a fuzz driver
for freetype2. After fuzzing for about ten minutes, Lib-
Fuzzer reports a heap-buffer-overflow (CVE-2022-27404 was
assigned to the bug) in function FT New Face(), as shown in
Listing 5. Specifically, the fuzzer tries to call FT New Face()
with a too-large value for the face index argument, and it is
truncated to a signed 32-bit integer in its low-level implemen-
tation, thus leading to the heap-buffer-overflow bug.

2) Synthesizing a driver for libaom: libaom is a video
codec library from Google and the Alliance for Open Media
(AOMedia). It serves as the reference software implementation
for the AV1 video coding formats. The library provides several

1 int main (int argc, char** argv) {
2 ...
3 aom_codec_ctx_t codec;
4 AvxVideoReader *reader =
5 aom_video_reader_open(argv[1]);
6 const AvxVideoInfo *info =
7 aom_video_reader_get_info(reader);
8 aom_codec_iface_t *decoder =
9 get_aom_decoder_by_fourcc(info->codec_fourcc);

10 aom_codec_dec_init(&codec, decoder, NULL, 0);
11
12 while (aom_video_reader_read_frame(reader)) {
13 aom_codec_iter_t iter = NULL;
14 size_t frame_size = 0;
15 const unsigned char *frame =
16 aom_video_reader_get_frame(
17 reader, &frame_size);
18 aom_codec_decode(&codec,
19 frame, frame_size, NULL);
20 while (aom_codec_get_frame(&codec, &iter)) {...}
21 ...
22 }
23 ...
24
25 aom_codec_destroy(&codec);
26 aom_video_reader_close(reader);
27 }

Listing 6 The library consumer simple decoder.c for libaom

1 (Allocate) codec, iter, frame_size;
2 (Call) reader=aom_video_reader_open(_0);
3 (Call) info=aom_video_reader_get_info(reader);
4 (Call) decoder=get_aom_decoder_by_fourcc(_1);
5 (Call) _2=decoder->codec_interface();
6 (Call) aom_codec_dec_init(&codec, _2, NULL, 0);
7 (Call) aom_video_reader_read_frame(reader);
8 (Call) frame=aom_video_reader_get_frame(
9 reader, &frame_size);

10 (Call) aom_codec_decode(&codec,
11 frame, frame_size, NULL);
12 (Call) aom_codec_get_frame(&codec, &iter);
13 ...
14 (Call) aom_codec_destroy(&decoder);
15 (Call) aom_video_reader_close(reader);

Listing 7 The OUS extracted from libaom library consumer

consumer programs, where we utilize DAISY to synthesize a
fuzz driver based on the simplest consumer simple decoder.c.

The main function of simple decoder.c is shown in List-
ing 6. The consumer calls a series of API functions in a
specific order. By executing the consumer, DAISY constructs
an Object Usage Sequence as shown in Listing 7. codec, iter,
and frame size are three explicit objects; 0, 1, and 2 in
Listing 7 are three implicit objects. From the two listings, we
can see that all object usage patterns are abstracted from the
original consumer. Take the codec object as an example, it is
allocated at Line 1 and used in Lines 6, 10, and 12, which
is in the same usage order as the library consumer. DAISY
then synthesizes a fuzz driver using the procedure described
in Section IV-B.

After fuzzing for about one minute, LibFuzzer reports a
memory-leak bug in aom video reader open, as shown in
Listing 8. If the checking function file is obu fails, libaom will
return a null pointer from aom video reader open. However,
file is obu does not free all chunks allocated by itself, hence
leading to the memory-leak bug.
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1 #0 in malloc (size=512000)
2 #1 in file_is_obu (obu_ctx=...)
3 #2 in aom_video_reader_open (filename=...)
4 #3 in LLVMFuzzerTestOneInput (data=..., size=3)

Listing 8 The memory-leak detected in libvpx by DAISY

3) The effectiveness of DAISY’s OUS merging algorithm.
For the two projects, we take three other consumers, use
DAISY to extract OUS from each consumer and synthesize
a fuzz driver based on each single OUS. We run each fuzz
driver 24 hours 5 times and take the highest code coverage as
the indicator to judge the quality of the fuzz driver. Afterward,
we merge the three OUSes into one and generate another driver
based on the merged OUS, also run it 24 hours 5 times and
present the highest code coverage.

TABLE IV: Highest basic block coverage over 5 runs in 24
hours using fuzz drivers generated based on different OUSes.

freetype2 libaom

OUS1 1216 1141
OUS2 14017 15148
OUS3 16837 1310
Union 18858 15790
DAISY 20072 20933

Improvement 6.4% 31.1%

Tabel IV shows the final result. The first three rows show the
three fuzz drivers’ coverage. The fourth row shows the union
coverage of the three fuzz drivers. Since the code coverage of
the three fuzz drivers based on the single OUS overlaps with
each other, the union code coverage is smaller than the simple
sum of the three fuzz drivers’ coverage. At the same time,
DAISY also merges the three OUS into one, and synthesizes
a fuzz driver based on the merged OUS, whose coverage is
shown in the fifth row. We can see that DAISY covers 6.4% and
31.1% more codes than the union of three fuzz drivers based
on the unmerged OUS on freetype2 and libaom, respectively.
This shows that DAISY’s OUS merging algorithm can improve
the code coverage of the generated fuzz driver.

In summary, DAISY extracts object usage information from
real-world library consumers and generates driver programs,
which allows the fuzz engine to detect previously-unknown
bugs, even in those extensively-fuzzed real-world benchmarks.

D. Discussion

In this section, we discuss the limitations of DAISY. The
first limitation is the dependency on consumers. DAISY gen-
erates fuzz drivers by extracting and merging OUSes from
library consumers. Without consumers, DAISY cannot get the
OUS, hence unable to generate a fuzz driver. For the same rea-
son, DAISY cannot generate corner cases that are not included
in the consumers. One promising solution is to automatically
generate test cases for libraries as their consumers to assist
fuzz driver synthesis. We leave this to future work. The second
limitation is the insufficient exploration of the initial seeds.

Meanwhile, as discussed in Section V-B, DAISY can hardly
take advantage of the off-the-shelf initial seeds provided by the
library, since they are provided for the existing fuzz drivers.
Besides, 2 fuzz drivers generated by DAISY may introduce
new bugs because of the merging OUSes. Currently, we merge
all OUSes one by one, once the merged OUS leads to a false
positive, we then discard the last OUS to avoid the bug.

VI. LESSONS LEARNED

The usability of drivers in practical settings will im-
pact the efficiency of fuzzing. Generally speaking, driver
synthesizers need to be relatively effective and versatile, i.e.
allow the fuzzer to test a significant proportion of the code and
can be used across various libraries. While previous attempts
at automated driver synthesis have achieved varying degrees
of improvement over their predecessors, they are not well-
suited for practical settings. DAISY improves significantly in
its effectiveness and versatility by utilizing dynamic object
usage information and can be utilized to generate drivers for
a wide range of libraries.

More readable fuzz drivers are able to assist testers
in better testing the entire project. In some cases, testers
need to make small modifications to the automatically gen-
erated fuzz drivers to introduce new features. This requires
the automatically generated fuzz drivers to be well-readable.
DAISY generates fuzz drivers in C++ programming language.
Though the readability of the fuzz drivers synthesized by
DAISY could still be improved, testers may spend some time
reading and understanding the automatically generated fuzz
drivers, and modifying them appropriately to customize the
fuzzing process.

A more accurate OUS merging algorithm needs more
analysis of program semantics. Currently, DAISY merges
two different OUSes based on a greedy algorithm, which only
merges the function call nodes that may match. The algo-
rithm may not take into account the rich program semantics
embedded in the OUS. In the future, we may split the OUS
into small pieces, analyze the program semantics of the target
library from these fragment OUS pieces, then use the program
semantics as a basis to combine the resulting OUS pieces
into a fuzz driver. Such an algorithm may take more time
to run than the current algorithm, but it can introduce richer
program semantic information. By introducing richer program
semantics, the readability of the automatically generated fuzz
driver can be improved, and it may be able to cover more code
and detect more hidden bugs in the target library.

VII. CONCLUSION

Current automated fuzz driver synthesis approaches experi-
ence difficulties in producing drivers that contain valid object
usage and interface function invocation sequences, reducing
the efficiency of library fuzzing and hindering the use of
fuzzing in industrial settings. In this paper, we propose DAISY,
a driver synthesis framework that extracts actual object usage
sequences dynamically from library consumers and uses this
information to construct driver programs with valid object
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usage and interface invocation sequences. We implemented
DAISY using the LLVM compiler framework and evaluated it
on the Android Open Source Program (AOSP) and FuzzBench
libraries against the synthesizers FuzzGen and IntelliGen.
DAISY covered much more basic blocks than FuzzGen and
IntelliGen, respectively, and detected 9 previously-unknown
bugs with 3 CVEs assigned. Furthermore, DAISY is better
suited for practical settings and we will open-source it for
public usage, as it can synthesize drivers for more libraries
than FuzzGen and IntelliGen.
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